|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from transformers import pipeline |
|
import os |
|
from huggingface_hub import login |
|
|
|
|
|
access_token = os.environ.get("ACCESS_TOKEN_1") |
|
login(token=access_token) |
|
|
|
app = FastAPI() |
|
|
|
|
|
model_name = "MHULO/yembaner" |
|
nlp = pipeline("ner", model=model_name, tokenizer=model_name) |
|
|
|
class TextRequest(BaseModel): |
|
text: str |
|
|
|
@app.post("/predict/") |
|
def predict(request: TextRequest): |
|
ner_results = nlp(request.text) |
|
return ner_results |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |
|
|