MHULO commited on
Commit
85a7a06
·
verified ·
1 Parent(s): df8de4b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -32
app.py CHANGED
@@ -1,32 +1,4 @@
1
- # from fastapi import FastAPI
2
- # from pydantic import BaseModel
3
- # from transformers import pipeline
4
- # import os
5
- # from huggingface_hub import login
6
-
7
- # # Log in to Hugging Face
8
- # access_token = os.environ.get("ACCESS_TOKEN_1")
9
- # login(token=access_token, add_to_git_credential=True)
10
-
11
- # app = FastAPI()
12
-
13
- # # Load the model and tokenizer from the Hugging Face Hub
14
- # model_name = "MHULO/yembaner"
15
- # nlp = pipeline("ner", model=model_name, tokenizer=model_name)
16
-
17
- # class TextRequest(BaseModel):
18
- # text: str
19
-
20
- # @app.post("/predict/")
21
- # def predict(request: TextRequest):
22
- # ner_results = nlp(request.text)
23
- # return ner_results
24
-
25
- # if __name__ == "__main__":
26
- # import uvicorn
27
- # uvicorn.run(app, host="0.0.0.0", port=80)
28
-
29
-
30
  from fastapi import FastAPI
31
  from pydantic import BaseModel
32
  from transformers import pipeline
@@ -34,6 +6,9 @@ import os
34
 
35
  app = FastAPI()
36
 
 
 
 
37
  # Load the model and tokenizer from the Hugging Face Hub
38
  model_name = "MHULO/yembaner"
39
  nlp = pipeline("ner", model=model_name, tokenizer=model_name)
@@ -46,7 +21,7 @@ def predict(request: TextRequest):
46
  ner_results = nlp(request.text)
47
  return ner_results
48
 
49
- if __name__ == "__main__":
50
- import uvicorn
51
- uvicorn.run(app, host="0.0.0.0", port=8000)
52
 
 
 
 
 
1
+ from huggingface_hub import login
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  from fastapi import FastAPI
3
  from pydantic import BaseModel
4
  from transformers import pipeline
 
6
 
7
  app = FastAPI()
8
 
9
+ access_token = os.environ.get("ACCESS_TOKEN_1")
10
+ login(token=access_token, add_to_git_credential=True)
11
+
12
  # Load the model and tokenizer from the Hugging Face Hub
13
  model_name = "MHULO/yembaner"
14
  nlp = pipeline("ner", model=model_name, tokenizer=model_name)
 
21
  ner_results = nlp(request.text)
22
  return ner_results
23
 
 
 
 
24
 
25
+ @app.get("/")
26
+ def root():
27
+ return {"prediction url": "/predict/"}