File size: 7,277 Bytes
5215be1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# app.py
import gradio as gr
import requests
from bs4 import BeautifulSoup
from transformers import pipeline
import PyPDF2
import docx
import os
from typing import List, Tuple, Optional
from smolagents import CodeAgent, HfApiModel, Tool

class ContentAnalyzer:
    def __init__(self):
        # Initialize models
        self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
        self.sentiment_analyzer = pipeline("sentiment-analysis")
        self.zero_shot = pipeline("zero-shot-classification")
        
    def read_file(self, file_obj) -> str:
        """Read content from different file types."""
        if file_obj is None:
            return ""
            
        file_ext = os.path.splitext(file_obj.name)[1].lower()
        
        try:
            if file_ext == '.txt':
                return file_obj.read().decode('utf-8')
                
            elif file_ext == '.pdf':
                pdf_reader = PyPDF2.PdfReader(file_obj)
                text = ""
                for page in pdf_reader.pages:
                    text += page.extract_text() + "\n"
                return text
                
            elif file_ext == '.docx':
                doc = docx.Document(file_obj)
                return "\n".join([paragraph.text for paragraph in doc.paragraphs])
                
            else:
                return f"Unsupported file type: {file_ext}"
                
        except Exception as e:
            return f"Error reading file: {str(e)}"

    def fetch_web_content(self, url: str) -> str:
        """Fetch content from URL."""
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            soup = BeautifulSoup(response.text, 'html.parser')
            
            # Remove scripts and styles
            for script in soup(["script", "style"]):
                script.decompose()
            
            text = soup.get_text(separator='\n')
            lines = (line.strip() for line in text.splitlines())
            return "\n".join(line for line in lines if line)
            
        except Exception as e:
            return f"Error fetching URL: {str(e)}"

    def analyze_content(self, 
                       text: Optional[str] = None,
                       url: Optional[str] = None,
                       file: Optional[object] = None,
                       analysis_types: List[str] = ["summarize"]) -> dict:
        """Analyze content from text, URL, or file."""
        try:
            # Get content from appropriate source
            if url:
                content = self.fetch_web_content(url)
            elif file:
                content = self.read_file(file)
            else:
                content = text or ""

            if not content or content.startswith("Error"):
                return {"error": content or "No content provided"}

            results = {
                "original_text": content[:1000] + "..." if len(content) > 1000 else content
            }

            # Perform requested analyses
            if "summarize" in analysis_types:
                summary = self.summarizer(content[:1024], max_length=130, min_length=30)
                results["summary"] = summary[0]['summary_text']

            if "sentiment" in analysis_types:
                sentiment = self.sentiment_analyzer(content[:512])
                results["sentiment"] = {
                    "label": sentiment[0]['label'],
                    "score": round(sentiment[0]['score'], 3)
                }

            if "topics" in analysis_types:
                topics = self.zero_shot(
                    content[:512],
                    candidate_labels=["technology", "science", "business", 
                                    "politics", "entertainment", "education", 
                                    "health", "sports"]
                )
                results["topics"] = [
                    {"label": label, "score": round(score, 3)}
                    for label, score in zip(topics['labels'], topics['scores'])
                    if score > 0.1
                ]

            return results

        except Exception as e:
            return {"error": f"Analysis error: {str(e)}"}

def create_interface():
    analyzer = ContentAnalyzer()
    
    with gr.Blocks(title="Content Analyzer") as demo:
        gr.Markdown("# πŸ“‘ Content Analyzer")
        gr.Markdown("Analyze text content from various sources using AI.")
        
        with gr.Tabs():
            # Text Input Tab
            with gr.Tab("Text Input"):
                text_input = gr.Textbox(
                    label="Enter Text",
                    placeholder="Paste your text here...",
                    lines=5
                )
                
            # URL Input Tab
            with gr.Tab("Web URL"):
                url_input = gr.Textbox(
                    label="Enter URL",
                    placeholder="https://example.com"
                )
                
            # File Upload Tab
            with gr.Tab("File Upload"):
                file_input = gr.File(
                    label="Upload File",
                    file_types=[".txt", ".pdf", ".docx"]
                )
        
        # Analysis Options
        analysis_types = gr.CheckboxGroup(
            choices=["summarize", "sentiment", "topics"],
            value=["summarize"],
            label="Analysis Types"
        )
        
        analyze_btn = gr.Button("Analyze", variant="primary")
        
        # Output Sections
        with gr.Tabs():
            with gr.Tab("Original Text"):
                original_text = gr.Markdown()
            with gr.Tab("Summary"):
                summary_output = gr.Markdown()
            with gr.Tab("Sentiment"):
                sentiment_output = gr.Markdown()
            with gr.Tab("Topics"):
                topics_output = gr.Markdown()
        
        def process_analysis(text, url, file, types):
            # Get analysis results
            results = analyzer.analyze_content(text, url, file, types)
            
            if "error" in results:
                return results["error"], "", "", ""
            
            # Format outputs
            original = results.get("original_text", "")
            summary = results.get("summary", "")
            
            sentiment = ""
            if "sentiment" in results:
                sent = results["sentiment"]
                sentiment = f"**Sentiment:** {sent['label']} (Confidence: {sent['score']})"
            
            topics = ""
            if "topics" in results:
                topics = "**Detected Topics:**\n" + "\n".join([
                    f"- {t['label']}: {t['score']}"
                    for t in results["topics"]
                ])
            
            return original, summary, sentiment, topics
        
        # Connect the interface
        analyze_btn.click(
            fn=process_analysis,
            inputs=[text_input, url_input, file_input, analysis_types],
            outputs=[original_text, summary_output, sentiment_output, topics_output]
        )
    
    return demo

# Launch the app
if __name__ == "__main__":
    demo = create_interface()
    demo.launch()