Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
# app.py
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
from bs4 import BeautifulSoup
|
@@ -6,70 +7,97 @@ from transformers import pipeline
|
|
6 |
import PyPDF2
|
7 |
import docx
|
8 |
import os
|
|
|
9 |
from typing import List, Tuple, Optional
|
10 |
-
from smolagents import CodeAgent, HfApiModel, Tool
|
11 |
|
12 |
class ContentAnalyzer:
|
13 |
def __init__(self):
|
14 |
-
|
15 |
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
16 |
self.sentiment_analyzer = pipeline("sentiment-analysis")
|
17 |
self.zero_shot = pipeline("zero-shot-classification")
|
18 |
-
|
|
|
19 |
def read_file(self, file_obj) -> str:
|
20 |
"""Read content from different file types."""
|
21 |
if file_obj is None:
|
|
|
22 |
return ""
|
23 |
-
|
24 |
file_ext = os.path.splitext(file_obj.name)[1].lower()
|
25 |
-
|
|
|
26 |
try:
|
27 |
if file_ext == '.txt':
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
elif file_ext == '.pdf':
|
|
|
31 |
pdf_reader = PyPDF2.PdfReader(file_obj)
|
32 |
text = ""
|
33 |
for page in pdf_reader.pages:
|
34 |
text += page.extract_text() + "\n"
|
|
|
35 |
return text
|
36 |
-
|
37 |
elif file_ext == '.docx':
|
38 |
doc = docx.Document(file_obj)
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
else:
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
except Exception as e:
|
45 |
-
|
|
|
|
|
46 |
|
47 |
def fetch_web_content(self, url: str) -> str:
|
48 |
"""Fetch content from URL."""
|
|
|
49 |
try:
|
50 |
response = requests.get(url, timeout=10)
|
51 |
response.raise_for_status()
|
52 |
soup = BeautifulSoup(response.text, 'html.parser')
|
53 |
-
|
54 |
# Remove scripts and styles
|
55 |
for script in soup(["script", "style"]):
|
56 |
script.decompose()
|
57 |
-
|
58 |
text = soup.get_text(separator='\n')
|
59 |
lines = (line.strip() for line in text.splitlines())
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
except Exception as e:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
try:
|
72 |
-
#
|
|
|
|
|
|
|
73 |
if url:
|
74 |
content = self.fetch_web_content(url)
|
75 |
elif file:
|
@@ -80,28 +108,37 @@ class ContentAnalyzer:
|
|
80 |
if not content or content.startswith("Error"):
|
81 |
return {"error": content or "No content provided"}
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
}
|
86 |
|
87 |
-
#
|
88 |
if "summarize" in analysis_types:
|
|
|
|
|
89 |
summary = self.summarizer(content[:1024], max_length=130, min_length=30)
|
90 |
results["summary"] = summary[0]['summary_text']
|
91 |
|
|
|
92 |
if "sentiment" in analysis_types:
|
|
|
|
|
93 |
sentiment = self.sentiment_analyzer(content[:512])
|
94 |
results["sentiment"] = {
|
95 |
"label": sentiment[0]['label'],
|
96 |
"score": round(sentiment[0]['score'], 3)
|
97 |
}
|
98 |
|
|
|
99 |
if "topics" in analysis_types:
|
|
|
|
|
100 |
topics = self.zero_shot(
|
101 |
content[:512],
|
102 |
-
candidate_labels=[
|
103 |
-
|
104 |
-
|
|
|
105 |
)
|
106 |
results["topics"] = [
|
107 |
{"label": label, "score": round(score, 3)}
|
@@ -112,15 +149,18 @@ class ContentAnalyzer:
|
|
112 |
return results
|
113 |
|
114 |
except Exception as e:
|
115 |
-
|
|
|
|
|
|
|
116 |
|
117 |
def create_interface():
|
118 |
analyzer = ContentAnalyzer()
|
119 |
-
|
120 |
with gr.Blocks(title="Content Analyzer") as demo:
|
121 |
gr.Markdown("# 📑 Content Analyzer")
|
122 |
gr.Markdown("Analyze text content from various sources using AI.")
|
123 |
-
|
124 |
with gr.Tabs():
|
125 |
# Text Input Tab
|
126 |
with gr.Tab("Text Input"):
|
@@ -129,30 +169,30 @@ def create_interface():
|
|
129 |
placeholder="Paste your text here...",
|
130 |
lines=5
|
131 |
)
|
132 |
-
|
133 |
# URL Input Tab
|
134 |
with gr.Tab("Web URL"):
|
135 |
url_input = gr.Textbox(
|
136 |
label="Enter URL",
|
137 |
placeholder="https://example.com"
|
138 |
)
|
139 |
-
|
140 |
# File Upload Tab
|
141 |
with gr.Tab("File Upload"):
|
142 |
file_input = gr.File(
|
143 |
label="Upload File",
|
144 |
file_types=[".txt", ".pdf", ".docx"]
|
145 |
)
|
146 |
-
|
147 |
# Analysis Options
|
148 |
analysis_types = gr.CheckboxGroup(
|
149 |
choices=["summarize", "sentiment", "topics"],
|
150 |
value=["summarize"],
|
151 |
label="Analysis Types"
|
152 |
)
|
153 |
-
|
154 |
analyze_btn = gr.Button("Analyze", variant="primary")
|
155 |
-
|
156 |
# Output Sections
|
157 |
with gr.Tabs():
|
158 |
with gr.Tab("Original Text"):
|
@@ -163,14 +203,29 @@ def create_interface():
|
|
163 |
sentiment_output = gr.Markdown()
|
164 |
with gr.Tab("Topics"):
|
165 |
topics_output = gr.Markdown()
|
166 |
-
|
167 |
-
def process_analysis(text, url, file, types):
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
if "error" in results:
|
172 |
return results["error"], "", "", ""
|
173 |
-
|
174 |
# Format outputs
|
175 |
original = results.get("original_text", "")
|
176 |
summary = results.get("summary", "")
|
@@ -179,26 +234,26 @@ def create_interface():
|
|
179 |
if "sentiment" in results:
|
180 |
sent = results["sentiment"]
|
181 |
sentiment = f"**Sentiment:** {sent['label']} (Confidence: {sent['score']})"
|
182 |
-
|
183 |
topics = ""
|
184 |
if "topics" in results:
|
185 |
-
|
186 |
f"- {t['label']}: {t['score']}"
|
187 |
for t in results["topics"]
|
188 |
])
|
189 |
-
|
|
|
190 |
return original, summary, sentiment, topics
|
191 |
-
|
192 |
-
# Connect the interface
|
193 |
analyze_btn.click(
|
194 |
fn=process_analysis,
|
195 |
inputs=[text_input, url_input, file_input, analysis_types],
|
196 |
-
outputs=[original_text, summary_output, sentiment_output, topics_output]
|
|
|
197 |
)
|
198 |
-
|
199 |
return demo
|
200 |
|
201 |
-
# Launch the app
|
202 |
if __name__ == "__main__":
|
203 |
demo = create_interface()
|
204 |
-
demo.launch()
|
|
|
1 |
# app.py
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
from bs4 import BeautifulSoup
|
|
|
7 |
import PyPDF2
|
8 |
import docx
|
9 |
import os
|
10 |
+
import time
|
11 |
from typing import List, Tuple, Optional
|
|
|
12 |
|
13 |
class ContentAnalyzer:
|
14 |
def __init__(self):
|
15 |
+
print("[DEBUG] Initializing pipelines...")
|
16 |
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
17 |
self.sentiment_analyzer = pipeline("sentiment-analysis")
|
18 |
self.zero_shot = pipeline("zero-shot-classification")
|
19 |
+
print("[DEBUG] Pipelines initialized.")
|
20 |
+
|
21 |
def read_file(self, file_obj) -> str:
|
22 |
"""Read content from different file types."""
|
23 |
if file_obj is None:
|
24 |
+
print("[DEBUG] No file uploaded.")
|
25 |
return ""
|
26 |
+
|
27 |
file_ext = os.path.splitext(file_obj.name)[1].lower()
|
28 |
+
print(f"[DEBUG] Uploaded file extension detected: {file_ext}")
|
29 |
+
|
30 |
try:
|
31 |
if file_ext == '.txt':
|
32 |
+
content = file_obj.read().decode('utf-8')
|
33 |
+
print("[DEBUG] Successfully read .txt file.")
|
34 |
+
return content
|
35 |
+
|
36 |
elif file_ext == '.pdf':
|
37 |
+
# Note: For PyPDF2 >= 3.0.0, this usage is valid
|
38 |
pdf_reader = PyPDF2.PdfReader(file_obj)
|
39 |
text = ""
|
40 |
for page in pdf_reader.pages:
|
41 |
text += page.extract_text() + "\n"
|
42 |
+
print("[DEBUG] Successfully read .pdf file.")
|
43 |
return text
|
44 |
+
|
45 |
elif file_ext == '.docx':
|
46 |
doc = docx.Document(file_obj)
|
47 |
+
paragraphs = [paragraph.text for paragraph in doc.paragraphs]
|
48 |
+
print("[DEBUG] Successfully read .docx file.")
|
49 |
+
return "\n".join(paragraphs)
|
50 |
+
|
51 |
else:
|
52 |
+
msg = f"Unsupported file type: {file_ext}"
|
53 |
+
print("[DEBUG]", msg)
|
54 |
+
return msg
|
55 |
+
|
56 |
except Exception as e:
|
57 |
+
error_msg = f"Error reading file: {str(e)}"
|
58 |
+
print("[DEBUG]", error_msg)
|
59 |
+
return error_msg
|
60 |
|
61 |
def fetch_web_content(self, url: str) -> str:
|
62 |
"""Fetch content from URL."""
|
63 |
+
print(f"[DEBUG] Attempting to fetch URL: {url}")
|
64 |
try:
|
65 |
response = requests.get(url, timeout=10)
|
66 |
response.raise_for_status()
|
67 |
soup = BeautifulSoup(response.text, 'html.parser')
|
68 |
+
|
69 |
# Remove scripts and styles
|
70 |
for script in soup(["script", "style"]):
|
71 |
script.decompose()
|
72 |
+
|
73 |
text = soup.get_text(separator='\n')
|
74 |
lines = (line.strip() for line in text.splitlines())
|
75 |
+
final_text = "\n".join(line for line in lines if line)
|
76 |
+
print("[DEBUG] Successfully fetched and cleaned web content.")
|
77 |
+
return final_text
|
78 |
+
|
79 |
except Exception as e:
|
80 |
+
error_msg = f"Error fetching URL: {str(e)}"
|
81 |
+
print("[DEBUG]", error_msg)
|
82 |
+
return error_msg
|
83 |
+
|
84 |
+
def analyze_content(
|
85 |
+
self,
|
86 |
+
text: Optional[str] = None,
|
87 |
+
url: Optional[str] = None,
|
88 |
+
file: Optional[object] = None,
|
89 |
+
analysis_types: List[str] = ["summarize"],
|
90 |
+
progress_callback=None
|
91 |
+
) -> dict:
|
92 |
+
"""
|
93 |
+
Analyze content from text, URL, or file.
|
94 |
+
progress_callback is a function for updating progress steps.
|
95 |
+
"""
|
96 |
try:
|
97 |
+
# Step 1: Retrieve content
|
98 |
+
if progress_callback:
|
99 |
+
progress_callback(1, "Reading input...")
|
100 |
+
|
101 |
if url:
|
102 |
content = self.fetch_web_content(url)
|
103 |
elif file:
|
|
|
108 |
if not content or content.startswith("Error"):
|
109 |
return {"error": content or "No content provided"}
|
110 |
|
111 |
+
# Truncate for debug
|
112 |
+
truncated = content[:1000] + "..." if len(content) > 1000 else content
|
113 |
+
results = {"original_text": truncated}
|
114 |
|
115 |
+
# Step 2: Summarize
|
116 |
if "summarize" in analysis_types:
|
117 |
+
if progress_callback:
|
118 |
+
progress_callback(2, "Summarizing content...")
|
119 |
summary = self.summarizer(content[:1024], max_length=130, min_length=30)
|
120 |
results["summary"] = summary[0]['summary_text']
|
121 |
|
122 |
+
# Step 3: Sentiment
|
123 |
if "sentiment" in analysis_types:
|
124 |
+
if progress_callback:
|
125 |
+
progress_callback(3, "Performing sentiment analysis...")
|
126 |
sentiment = self.sentiment_analyzer(content[:512])
|
127 |
results["sentiment"] = {
|
128 |
"label": sentiment[0]['label'],
|
129 |
"score": round(sentiment[0]['score'], 3)
|
130 |
}
|
131 |
|
132 |
+
# Step 4: Topics
|
133 |
if "topics" in analysis_types:
|
134 |
+
if progress_callback:
|
135 |
+
progress_callback(4, "Identifying topics...")
|
136 |
topics = self.zero_shot(
|
137 |
content[:512],
|
138 |
+
candidate_labels=[
|
139 |
+
"technology", "science", "business", "politics",
|
140 |
+
"entertainment", "education", "health", "sports"
|
141 |
+
]
|
142 |
)
|
143 |
results["topics"] = [
|
144 |
{"label": label, "score": round(score, 3)}
|
|
|
149 |
return results
|
150 |
|
151 |
except Exception as e:
|
152 |
+
error_msg = f"Analysis error: {str(e)}"
|
153 |
+
print("[DEBUG]", error_msg)
|
154 |
+
return {"error": error_msg}
|
155 |
+
|
156 |
|
157 |
def create_interface():
|
158 |
analyzer = ContentAnalyzer()
|
159 |
+
|
160 |
with gr.Blocks(title="Content Analyzer") as demo:
|
161 |
gr.Markdown("# 📑 Content Analyzer")
|
162 |
gr.Markdown("Analyze text content from various sources using AI.")
|
163 |
+
|
164 |
with gr.Tabs():
|
165 |
# Text Input Tab
|
166 |
with gr.Tab("Text Input"):
|
|
|
169 |
placeholder="Paste your text here...",
|
170 |
lines=5
|
171 |
)
|
172 |
+
|
173 |
# URL Input Tab
|
174 |
with gr.Tab("Web URL"):
|
175 |
url_input = gr.Textbox(
|
176 |
label="Enter URL",
|
177 |
placeholder="https://example.com"
|
178 |
)
|
179 |
+
|
180 |
# File Upload Tab
|
181 |
with gr.Tab("File Upload"):
|
182 |
file_input = gr.File(
|
183 |
label="Upload File",
|
184 |
file_types=[".txt", ".pdf", ".docx"]
|
185 |
)
|
186 |
+
|
187 |
# Analysis Options
|
188 |
analysis_types = gr.CheckboxGroup(
|
189 |
choices=["summarize", "sentiment", "topics"],
|
190 |
value=["summarize"],
|
191 |
label="Analysis Types"
|
192 |
)
|
193 |
+
|
194 |
analyze_btn = gr.Button("Analyze", variant="primary")
|
195 |
+
|
196 |
# Output Sections
|
197 |
with gr.Tabs():
|
198 |
with gr.Tab("Original Text"):
|
|
|
203 |
sentiment_output = gr.Markdown()
|
204 |
with gr.Tab("Topics"):
|
205 |
topics_output = gr.Markdown()
|
206 |
+
|
207 |
+
def process_analysis(text, url, file, types, progress=gr.Progress()):
|
208 |
+
"""
|
209 |
+
This function is wrapped by gradio to handle user inputs.
|
210 |
+
We use progress to show step-by-step updates.
|
211 |
+
"""
|
212 |
+
steps_total = 4 # We have up to 4 possible steps
|
213 |
+
|
214 |
+
def progress_callback(step, desc):
|
215 |
+
progress((step, desc), total=steps_total)
|
216 |
|
217 |
+
results = analyzer.analyze_content(
|
218 |
+
text=text,
|
219 |
+
url=url,
|
220 |
+
file=file,
|
221 |
+
analysis_types=types,
|
222 |
+
progress_callback=progress_callback
|
223 |
+
)
|
224 |
+
|
225 |
+
# If there's an error, show it in "Original Text" tab for clarity
|
226 |
if "error" in results:
|
227 |
return results["error"], "", "", ""
|
228 |
+
|
229 |
# Format outputs
|
230 |
original = results.get("original_text", "")
|
231 |
summary = results.get("summary", "")
|
|
|
234 |
if "sentiment" in results:
|
235 |
sent = results["sentiment"]
|
236 |
sentiment = f"**Sentiment:** {sent['label']} (Confidence: {sent['score']})"
|
237 |
+
|
238 |
topics = ""
|
239 |
if "topics" in results:
|
240 |
+
topics_list = "\n".join([
|
241 |
f"- {t['label']}: {t['score']}"
|
242 |
for t in results["topics"]
|
243 |
])
|
244 |
+
topics = "**Detected Topics:**\n" + topics_list
|
245 |
+
|
246 |
return original, summary, sentiment, topics
|
247 |
+
|
|
|
248 |
analyze_btn.click(
|
249 |
fn=process_analysis,
|
250 |
inputs=[text_input, url_input, file_input, analysis_types],
|
251 |
+
outputs=[original_text, summary_output, sentiment_output, topics_output],
|
252 |
+
show_progress=True # Enable the progress bar in Gradio
|
253 |
)
|
254 |
+
|
255 |
return demo
|
256 |
|
|
|
257 |
if __name__ == "__main__":
|
258 |
demo = create_interface()
|
259 |
+
demo.launch()
|