Spaces:
Sleeping
Sleeping
File size: 2,067 Bytes
37ff7dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# app.py
import gradio as gr
from smart_web_analyzer import WebAnalyzer
analyzer = WebAnalyzer()
def format_results(results: dict) -> dict:
"""Format analysis results for Gradio tabs"""
outputs = {}
if 'error' in results:
return {"π Error": f"β {results['error']}"}
outputs["π Clean Text"] = results.get('clean_text', 'No text extracted')
if 'summary' in results:
outputs["π Summary"] = f"**AI Summary:**\n{results['summary']}"
if 'sentiment' in results:
outputs["π Sentiment"] = f"**Sentiment Score:**\n{results['sentiment']}"
if 'topics' in results:
topics = "\n".join([f"- **{k}**: {v:.2f}" for k,v in results['topics'].items()])
outputs["π Topics"] = f"**Detected Topics:**\n{topics}"
return outputs
with gr.Blocks(title="Smart Web Analyzer Plus") as demo:
gr.Markdown("# π Smart Web Analyzer Plus")
with gr.Row():
url_input = gr.Textbox(label="Enter URL", placeholder="https://example.com")
modes = gr.CheckboxGroup(["summarize", "sentiment", "topics"],
label="Analysis Types")
submit_btn = gr.Button("Analyze", variant="primary")
with gr.Tabs():
with gr.Tab("π Clean Text"):
clean_text = gr.Markdown()
with gr.Tab("π Summary"):
summary = gr.Markdown()
with gr.Tab("π Sentiment"):
sentiment = gr.Markdown()
with gr.Tab("π Topics"):
topics = gr.Markdown()
examples = gr.Examples(
examples=[
["https://www.bbc.com/news/technology-67881954", ["summarize", "sentiment"]],
["https://arxiv.org/html/2312.17296v1", ["topics", "summarize"]]
],
inputs=[url_input, modes]
)
submit_btn.click(
fn=lambda url, m: format_results(analyzer.analyze(url, m)),
inputs=[url_input, modes],
outputs=[clean_text, summary, sentiment, topics]
)
if __name__ == "__main__":
demo.launch() |