File size: 7,504 Bytes
265b6a6
 
 
5952adf
 
 
 
 
 
 
 
 
265b6a6
 
 
 
5952adf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265b6a6
5952adf
 
 
 
 
 
 
 
 
 
265b6a6
5952adf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265b6a6
5952adf
 
 
 
 
 
 
 
 
 
265b6a6
 
 
 
 
5952adf
265b6a6
 
5952adf
 
265b6a6
 
 
5952adf
265b6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5952adf
 
 
 
265b6a6
5952adf
265b6a6
5952adf
265b6a6
5952adf
265b6a6
5952adf
265b6a6
 
 
 
 
 
 
 
 
 
 
 
5952adf
 
265b6a6
5952adf
 
265b6a6
5952adf
265b6a6
5952adf
 
 
265b6a6
5952adf
265b6a6
5952adf
265b6a6
5952adf
265b6a6
 
 
 
 
 
 
 
5952adf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Gradio_UI.py
import gradio as gr
from smolagents import CodeAgent
from typing import Optional, Dict, List, Tuple
import re
import logging
from functools import lru_cache
import json
from datetime import datetime
import time

logger = logging.getLogger(__name__)

class GradioUI:
    def __init__(self, agent: CodeAgent):
        self.agent = agent
        self.cache = {}
        self.rate_limit = {}

    def validate_url(self, url: str) -> bool:
        """Validate URL format."""
        url_pattern = re.compile(
            r'^https?://'
            r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+[A-Z]{2,6}\.?|'
            r'localhost|'
            r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})'
            r'(?::\d+)?'
            r'(?:/?|[/?]\S+)$', re.IGNORECASE)
        return bool(url_pattern.match(url))

    def check_rate_limit(self, url: str) -> bool:
        """Check if URL has been requested too frequently."""
        current_time = time.time()
        if url in self.rate_limit:
            last_request = self.rate_limit[url]
            if current_time - last_request < 60:  # 1 minute cooldown
                return False
        self.rate_limit[url] = current_time
        return True

    @lru_cache(maxsize=100)
    def get_cached_analysis(self, url: str, analysis_types: tuple) -> Optional[Dict]:
        """Get cached analysis results if available."""
        cache_key = f"{url}_{','.join(analysis_types)}"
        return self.cache.get(cache_key)

    def store_cache(self, url: str, analysis_types: List[str], results: Dict):
        """Store analysis results in cache."""
        cache_key = f"{url}_{','.join(analysis_types)}"
        self.cache[cache_key] = {
            'results': results,
            'timestamp': datetime.now().isoformat()
        }

    def process_query(self, url: str, analysis_types: List[str]) -> Tuple[str, str, str, str]:
        """Process the analysis query and return results for all output tabs."""
        try:
            # Input validation
            if not url:
                raise ValueError("Please enter a URL")
            if not self.validate_url(url):
                raise ValueError("Invalid URL format")
            if not self.check_rate_limit(url):
                raise ValueError("Please wait before analyzing this URL again")

            # Check cache
            cached = self.get_cached_analysis(url, tuple(analysis_types))
            if cached:
                logger.info(f"Returning cached results for {url}")
                results = cached['results']
                return (
                    results.get('clean_text', ''),
                    results.get('summary', ''),
                    results.get('sentiment', ''),
                    results.get('topics', '')
                )

            # Create analysis prompt
            prompt = self.create_analysis_prompt(url, analysis_types)
            
            # Run analysis
            response = self.agent.run(prompt)
            
            # Parse response
            try:
                results = json.loads(response) if isinstance(response, str) else response
            except json.JSONDecodeError:
                results = {
                    'clean_text': response,
                    'summary': '',
                    'sentiment': '',
                    'topics': ''
                }

            # Cache results
            self.store_cache(url, analysis_types, results)

            return (
                results.get('clean_text', ''),
                results.get('summary', ''),
                results.get('sentiment', ''),
                results.get('topics', '')
            )

        except Exception as e:
            logger.error(f"Error processing query: {str(e)}")
            error_msg = f"⚠️ Error: {str(e)}"
            return error_msg, error_msg, error_msg, error_msg

    def create_analysis_prompt(self, url: str, types: List[str]) -> str:
        """Create the analysis prompt based on selected types."""
        if not types:
            types = ["summarize"]  # Default analysis type
        type_str = ", ".join(types)
        return f"Analyze the content at {url} and provide the following analysis: {type_str}. Return results in JSON format with keys: clean_text, summary, sentiment, topics."

    def launch(self, 
               server_name: Optional[str] = None,
               server_port: Optional[int] = None,
               share: bool = False):
        """Launch the Gradio interface."""
        
        # Create the interface
        with gr.Blocks(title="Smart Web Analyzer Plus", theme=gr.themes.Soft()) as demo:
            # Header
            gr.Markdown("# 🌐 Smart Web Analyzer Plus")
            gr.Markdown("Analyze web content using AI to extract summaries, determine sentiment, and identify topics.")
            
            # Input section
            with gr.Row():
                with gr.Column(scale=3):
                    url_input = gr.Textbox(
                        label="Enter URL",
                        placeholder="https://example.com",
                        show_label=True
                    )
                with gr.Column(scale=2):
                    analysis_types = gr.CheckboxGroup(
                        choices=["summarize", "sentiment", "topics"],
                        label="Analysis Types",
                        value=["summarize"],
                        show_label=True
                    )
                with gr.Column(scale=1):
                    analyze_btn = gr.Button(
                        "Analyze",
                        variant="primary"
                    )
            
            # Status indicator
            status = gr.Markdown(visible=False)
            
            # Output tabs
            with gr.Tabs() as tabs:
                with gr.TabItem("πŸ“„ Clean Text"):
                    clean_text_output = gr.Markdown()
                with gr.TabItem("πŸ“ Summary"):
                    summary_output = gr.Markdown()
                with gr.TabItem("🎭 Sentiment"):
                    sentiment_output = gr.Markdown()
                with gr.TabItem("πŸ“Š Topics"):
                    topics_output = gr.Markdown()
            
            # Examples
            gr.Examples(
                examples=[
                    ["https://www.bbc.com/news/technology-67881954", ["summarize", "sentiment"]],
                    ["https://arxiv.org/html/2312.17296v1", ["topics", "summarize"]]
                ],
                inputs=[url_input, analysis_types],
                label="Try these examples"
            )
            
            # Event handlers
            def on_analyze_click():
                return gr.update(value="⏳ Analysis in progress...", visible=True)

            def on_analyze_complete():
                return gr.update(value="", visible=False)

            analyze_btn.click(
                fn=on_analyze_click,
                outputs=[status],
                queue=False
            ).then(
                fn=self.process_query,
                inputs=[url_input, analysis_types],
                outputs=[clean_text_output, summary_output, sentiment_output, topics_output]
            ).then(
                fn=on_analyze_complete,
                outputs=[status]
            )
        
        # Launch the interface
        demo.launch(
            server_name=server_name,
            server_port=server_port,
            share=share
        )