MHamdan commited on
Commit
7eed016
·
1 Parent(s): 5952adf

Initial commit with full functionality extend app req tools

Browse files
Gradio_UI.py CHANGED
@@ -1,164 +1,122 @@
1
  # Gradio_UI.py
2
  import gradio as gr
3
  from smolagents import CodeAgent
4
- from typing import Optional, Dict, List, Tuple
5
- import re
6
  import logging
7
- from functools import lru_cache
 
8
  import json
9
- from datetime import datetime
10
- import time
11
 
12
  logger = logging.getLogger(__name__)
13
 
14
  class GradioUI:
15
  def __init__(self, agent: CodeAgent):
16
  self.agent = agent
17
- self.cache = {}
18
- self.rate_limit = {}
19
 
20
- def validate_url(self, url: str) -> bool:
21
- """Validate URL format."""
22
- url_pattern = re.compile(
23
- r'^https?://'
24
- r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+[A-Z]{2,6}\.?|'
25
- r'localhost|'
26
- r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})'
27
- r'(?::\d+)?'
28
- r'(?:/?|[/?]\S+)$', re.IGNORECASE)
29
- return bool(url_pattern.match(url))
30
-
31
- def check_rate_limit(self, url: str) -> bool:
32
- """Check if URL has been requested too frequently."""
33
- current_time = time.time()
34
- if url in self.rate_limit:
35
- last_request = self.rate_limit[url]
36
- if current_time - last_request < 60: # 1 minute cooldown
37
- return False
38
- self.rate_limit[url] = current_time
39
- return True
40
-
41
- @lru_cache(maxsize=100)
42
- def get_cached_analysis(self, url: str, analysis_types: tuple) -> Optional[Dict]:
43
- """Get cached analysis results if available."""
44
- cache_key = f"{url}_{','.join(analysis_types)}"
45
- return self.cache.get(cache_key)
46
-
47
- def store_cache(self, url: str, analysis_types: List[str], results: Dict):
48
- """Store analysis results in cache."""
49
- cache_key = f"{url}_{','.join(analysis_types)}"
50
- self.cache[cache_key] = {
51
- 'results': results,
52
- 'timestamp': datetime.now().isoformat()
53
  }
54
 
55
- def process_query(self, url: str, analysis_types: List[str]) -> Tuple[str, str, str, str]:
56
- """Process the analysis query and return results for all output tabs."""
57
  try:
58
- # Input validation
59
- if not url:
60
- raise ValueError("Please enter a URL")
61
- if not self.validate_url(url):
62
- raise ValueError("Invalid URL format")
63
- if not self.check_rate_limit(url):
64
- raise ValueError("Please wait before analyzing this URL again")
65
-
66
- # Check cache
67
- cached = self.get_cached_analysis(url, tuple(analysis_types))
68
- if cached:
69
- logger.info(f"Returning cached results for {url}")
70
- results = cached['results']
71
- return (
72
- results.get('clean_text', ''),
73
- results.get('summary', ''),
74
- results.get('sentiment', ''),
75
- results.get('topics', '')
76
- )
77
-
78
- # Create analysis prompt
79
- prompt = self.create_analysis_prompt(url, analysis_types)
80
 
81
- # Run analysis
82
- response = self.agent.run(prompt)
83
 
84
- # Parse response
85
- try:
86
- results = json.loads(response) if isinstance(response, str) else response
87
- except json.JSONDecodeError:
88
- results = {
89
- 'clean_text': response,
90
- 'summary': '',
91
- 'sentiment': '',
92
- 'topics': ''
93
- }
94
-
95
- # Cache results
96
- self.store_cache(url, analysis_types, results)
97
-
 
 
 
 
 
 
 
 
 
 
 
98
  return (
99
  results.get('clean_text', ''),
100
  results.get('summary', ''),
101
  results.get('sentiment', ''),
102
  results.get('topics', '')
103
  )
104
-
105
  except Exception as e:
106
- logger.error(f"Error processing query: {str(e)}")
107
- error_msg = f"⚠️ Error: {str(e)}"
108
  return error_msg, error_msg, error_msg, error_msg
109
 
110
- def create_analysis_prompt(self, url: str, types: List[str]) -> str:
111
- """Create the analysis prompt based on selected types."""
112
- if not types:
113
- types = ["summarize"] # Default analysis type
114
- type_str = ", ".join(types)
115
- return f"Analyze the content at {url} and provide the following analysis: {type_str}. Return results in JSON format with keys: clean_text, summary, sentiment, topics."
116
-
117
  def launch(self,
118
  server_name: Optional[str] = None,
119
  server_port: Optional[int] = None,
120
  share: bool = False):
121
  """Launch the Gradio interface."""
122
 
123
- # Create the interface
124
- with gr.Blocks(title="Smart Web Analyzer Plus", theme=gr.themes.Soft()) as demo:
125
  # Header
126
  gr.Markdown("# 🌐 Smart Web Analyzer Plus")
127
  gr.Markdown("Analyze web content using AI to extract summaries, determine sentiment, and identify topics.")
128
 
129
  # Input section
130
  with gr.Row():
131
- with gr.Column(scale=3):
132
- url_input = gr.Textbox(
133
- label="Enter URL",
134
- placeholder="https://example.com",
135
- show_label=True
136
- )
137
- with gr.Column(scale=2):
138
- analysis_types = gr.CheckboxGroup(
139
- choices=["summarize", "sentiment", "topics"],
140
- label="Analysis Types",
141
- value=["summarize"],
142
- show_label=True
143
- )
144
- with gr.Column(scale=1):
145
- analyze_btn = gr.Button(
146
- "Analyze",
147
- variant="primary"
148
- )
149
 
150
- # Status indicator
151
- status = gr.Markdown(visible=False)
152
 
153
- # Output tabs
154
- with gr.Tabs() as tabs:
155
- with gr.TabItem("📄 Clean Text"):
156
  clean_text_output = gr.Markdown()
157
- with gr.TabItem("📝 Summary"):
158
  summary_output = gr.Markdown()
159
- with gr.TabItem("🎭 Sentiment"):
160
  sentiment_output = gr.Markdown()
161
- with gr.TabItem("📊 Topics"):
162
  topics_output = gr.Markdown()
163
 
164
  # Examples
@@ -167,33 +125,33 @@ class GradioUI:
167
  ["https://www.bbc.com/news/technology-67881954", ["summarize", "sentiment"]],
168
  ["https://arxiv.org/html/2312.17296v1", ["topics", "summarize"]]
169
  ],
170
- inputs=[url_input, analysis_types],
171
- label="Try these examples"
172
  )
173
 
174
  # Event handlers
175
- def on_analyze_click():
176
  return gr.update(value="⏳ Analysis in progress...", visible=True)
177
-
178
- def on_analyze_complete():
179
  return gr.update(value="", visible=False)
180
-
 
181
  analyze_btn.click(
182
- fn=on_analyze_click,
183
- outputs=[status],
184
- queue=False
185
  ).then(
186
- fn=self.process_query,
187
  inputs=[url_input, analysis_types],
188
  outputs=[clean_text_output, summary_output, sentiment_output, topics_output]
189
  ).then(
190
- fn=on_analyze_complete,
191
- outputs=[status]
192
  )
193
 
194
  # Launch the interface
195
  demo.launch(
196
  server_name=server_name,
197
  server_port=server_port,
198
- share=share
 
199
  )
 
1
  # Gradio_UI.py
2
  import gradio as gr
3
  from smolagents import CodeAgent
4
+ from typing import Optional, List, Tuple
 
5
  import logging
6
+ from bs4 import BeautifulSoup
7
+ import requests
8
  import json
 
 
9
 
10
  logger = logging.getLogger(__name__)
11
 
12
  class GradioUI:
13
  def __init__(self, agent: CodeAgent):
14
  self.agent = agent
 
 
15
 
16
+ def fetch_content(self, url: str) -> str:
17
+ """Fetch content from URL."""
18
+ try:
19
+ response = requests.get(url)
20
+ response.raise_for_status()
21
+ soup = BeautifulSoup(response.text, 'html.parser')
22
+ return soup.get_text()
23
+ except Exception as e:
24
+ logger.error(f"Error fetching URL: {str(e)}")
25
+ return f"Error fetching content: {str(e)}"
26
+
27
+ def analyze_content(self, content: str, analysis_types: List[str]) -> dict:
28
+ """Analyze the content based on selected analysis types."""
29
+ results = {
30
+ 'clean_text': content[:1000] + '...' if len(content) > 1000 else content,
31
+ 'summary': '',
32
+ 'sentiment': '',
33
+ 'topics': ''
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  }
35
 
 
 
36
  try:
37
+ if 'summarize' in analysis_types:
38
+ results['summary'] = self.agent.run(f"Summarize this text: {content[:2000]}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
+ if 'sentiment' in analysis_types:
41
+ results['sentiment'] = self.agent.run(f"Analyze the sentiment of this text: {content[:2000]}")
42
 
43
+ if 'topics' in analysis_types:
44
+ results['topics'] = self.agent.run(f"Identify the main topics in this text: {content[:2000]}")
45
+
46
+ except Exception as e:
47
+ logger.error(f"Error in analysis: {str(e)}")
48
+ return {
49
+ 'error': str(e),
50
+ 'clean_text': 'Analysis failed',
51
+ 'summary': '',
52
+ 'sentiment': '',
53
+ 'topics': ''
54
+ }
55
+
56
+ return results
57
+
58
+ def process_url(self, url: str, analysis_types: List[str]) -> Tuple[str, str, str, str]:
59
+ """Process URL and return analysis results."""
60
+ try:
61
+ # Fetch content
62
+ content = self.fetch_content(url)
63
+
64
+ # Analyze content
65
+ results = self.analyze_content(content, analysis_types)
66
+
67
+ # Return results for each tab
68
  return (
69
  results.get('clean_text', ''),
70
  results.get('summary', ''),
71
  results.get('sentiment', ''),
72
  results.get('topics', '')
73
  )
 
74
  except Exception as e:
75
+ error_msg = f"Error: {str(e)}"
 
76
  return error_msg, error_msg, error_msg, error_msg
77
 
 
 
 
 
 
 
 
78
  def launch(self,
79
  server_name: Optional[str] = None,
80
  server_port: Optional[int] = None,
81
  share: bool = False):
82
  """Launch the Gradio interface."""
83
 
84
+ with gr.Blocks(title="Smart Web Analyzer Plus") as demo:
 
85
  # Header
86
  gr.Markdown("# 🌐 Smart Web Analyzer Plus")
87
  gr.Markdown("Analyze web content using AI to extract summaries, determine sentiment, and identify topics.")
88
 
89
  # Input section
90
  with gr.Row():
91
+ url_input = gr.Textbox(
92
+ label="Enter URL",
93
+ placeholder="https://example.com",
94
+ scale=3
95
+ )
96
+ analysis_types = gr.CheckboxGroup(
97
+ choices=["summarize", "sentiment", "topics"],
98
+ value=["summarize"],
99
+ label="Analysis Types",
100
+ scale=2
101
+ )
102
+ analyze_btn = gr.Button(
103
+ "Analyze",
104
+ variant="primary",
105
+ scale=1
106
+ )
 
 
107
 
108
+ # Progress indicator
109
+ progress = gr.Markdown(visible=False)
110
 
111
+ # Results section - using a single Tabs component
112
+ with gr.Tabs() as output_tabs:
113
+ with gr.Tab("Clean Text", id="clean_text"):
114
  clean_text_output = gr.Markdown()
115
+ with gr.Tab("Summary", id="summary"):
116
  summary_output = gr.Markdown()
117
+ with gr.Tab("Sentiment", id="sentiment"):
118
  sentiment_output = gr.Markdown()
119
+ with gr.Tab("Topics", id="topics"):
120
  topics_output = gr.Markdown()
121
 
122
  # Examples
 
125
  ["https://www.bbc.com/news/technology-67881954", ["summarize", "sentiment"]],
126
  ["https://arxiv.org/html/2312.17296v1", ["topics", "summarize"]]
127
  ],
128
+ inputs=[url_input, analysis_types]
 
129
  )
130
 
131
  # Event handlers
132
+ def show_progress():
133
  return gr.update(value="⏳ Analysis in progress...", visible=True)
134
+
135
+ def hide_progress():
136
  return gr.update(value="", visible=False)
137
+
138
+ # Connect the button click event
139
  analyze_btn.click(
140
+ fn=show_progress,
141
+ outputs=progress
 
142
  ).then(
143
+ fn=self.process_url,
144
  inputs=[url_input, analysis_types],
145
  outputs=[clean_text_output, summary_output, sentiment_output, topics_output]
146
  ).then(
147
+ fn=hide_progress,
148
+ outputs=progress
149
  )
150
 
151
  # Launch the interface
152
  demo.launch(
153
  server_name=server_name,
154
  server_port=server_port,
155
+ share=share,
156
+ debug=True
157
  )
__pycache__/Gradio_UI.cpython-312.pyc ADDED
Binary file (9.94 kB). View file
 
app.py CHANGED
@@ -4,31 +4,37 @@ from tools.final_answer import FinalAnswerTool
4
  import yaml
5
  from Gradio_UI import GradioUI
6
  import logging
 
7
 
8
  # Configure logging
9
  logging.basicConfig(
10
  level=logging.INFO,
11
- format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
 
 
 
 
12
  )
13
  logger = logging.getLogger(__name__)
14
 
15
  def create_agent():
 
16
  try:
17
- # Initialize the final answer tool
18
  final_answer = FinalAnswerTool()
19
 
20
- # Load prompt templates
21
  with open("prompts.yaml", 'r', encoding='utf-8') as stream:
22
  prompt_templates = yaml.safe_load(stream)
23
 
24
- # Create the model
25
  model = HfApiModel(
26
  model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
27
  max_tokens=2096,
28
  temperature=0.5
29
  )
30
 
31
- # Create and return the agent
32
  return CodeAgent(
33
  model=model,
34
  tools=[final_answer],
@@ -37,25 +43,28 @@ def create_agent():
37
  prompt_templates=prompt_templates
38
  )
39
  except Exception as e:
40
- logger.error(f"Error creating agent: {str(e)}")
41
  raise
42
 
43
  def main():
 
44
  try:
45
- # Create and launch the agent
46
- logger.info("Initializing Smart Web Analyzer Plus...")
 
47
  agent = create_agent()
 
48
 
49
- # Initialize and launch UI
50
  ui = GradioUI(agent)
51
  ui.launch(
52
  server_name="0.0.0.0",
53
  server_port=7860,
54
- share=False # Set to True if you want to share publicly
55
  )
56
  except Exception as e:
57
- logger.error(f"Application startup failed: {str(e)}")
58
- raise
59
 
60
  if __name__ == "__main__":
61
  main()
 
4
  import yaml
5
  from Gradio_UI import GradioUI
6
  import logging
7
+ import sys
8
 
9
  # Configure logging
10
  logging.basicConfig(
11
  level=logging.INFO,
12
+ format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
13
+ handlers=[
14
+ logging.StreamHandler(sys.stdout),
15
+ logging.FileHandler('app.log')
16
+ ]
17
  )
18
  logger = logging.getLogger(__name__)
19
 
20
  def create_agent():
21
+ """Create and configure the agent."""
22
  try:
23
+ # Initialize tools
24
  final_answer = FinalAnswerTool()
25
 
26
+ # Load prompts
27
  with open("prompts.yaml", 'r', encoding='utf-8') as stream:
28
  prompt_templates = yaml.safe_load(stream)
29
 
30
+ # Initialize model
31
  model = HfApiModel(
32
  model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
33
  max_tokens=2096,
34
  temperature=0.5
35
  )
36
 
37
+ # Create agent
38
  return CodeAgent(
39
  model=model,
40
  tools=[final_answer],
 
43
  prompt_templates=prompt_templates
44
  )
45
  except Exception as e:
46
+ logger.error(f"Failed to create agent: {str(e)}")
47
  raise
48
 
49
  def main():
50
+ """Main application entry point."""
51
  try:
52
+ logger.info("Starting Smart Web Analyzer Plus...")
53
+
54
+ # Create agent
55
  agent = create_agent()
56
+ logger.info("Agent created successfully")
57
 
58
+ # Create and launch UI
59
  ui = GradioUI(agent)
60
  ui.launch(
61
  server_name="0.0.0.0",
62
  server_port=7860,
63
+ share=False
64
  )
65
  except Exception as e:
66
+ logger.error(f"Application failed to start: {str(e)}")
67
+ sys.exit(1)
68
 
69
  if __name__ == "__main__":
70
  main()
tools/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (196 Bytes). View file
 
tools/__pycache__/final_answer.cpython-312.pyc ADDED
Binary file (4.02 kB). View file