Spaces:
Runtime error
Runtime error
File size: 7,479 Bytes
b35bc08 7df49c3 b35bc08 7df49c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
import json
from smolagents import load_tool
import time
from datetime import datetime
import plotly.graph_objects as go
from fpdf import FPDF
import tempfile
import os
# Load the analyzer with caching
analyzer = load_tool("MHamdan/smart-web-analyzer-plus", trust_remote_code=True)
analysis_cache = {}
def create_sentiment_chart(sentiment_data):
"""Creates an interactive bar chart for sentiment analysis."""
sections = []
scores = []
for item in sentiment_data['sections']:
sections.append(f"Section {item['section']}")
scores.append(item['score'])
fig = go.Figure(data=[
go.Bar(
x=sections,
y=scores,
marker_color='rgb(55, 83, 109)',
text=scores,
textposition='auto'
)
])
fig.update_layout(
title='Sentiment Analysis by Section',
xaxis_title='Content Sections',
yaxis_title='Sentiment Score (1-5)',
yaxis_range=[0, 5]
)
return fig
def generate_pdf_report(analysis_result):
"""Generates a PDF report from analysis results."""
pdf = FPDF()
pdf.add_page()
# Header
pdf.set_font('Arial', 'B', 16)
pdf.cell(0, 10, 'Content Analysis Report', 0, 1, 'C')
pdf.line(10, 30, 200, 30)
# Date
pdf.set_font('Arial', '', 10)
pdf.cell(0, 10, f'Generated on: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}', 0, 1)
# Content
pdf.set_font('Arial', 'B', 12)
pdf.cell(0, 10, 'Basic Statistics:', 0, 1)
pdf.set_font('Arial', '', 10)
stats = analysis_result.get('stats', {})
for key, value in stats.items():
pdf.cell(0, 10, f'{key.title()}: {value}', 0, 1)
if 'summary' in analysis_result:
pdf.set_font('Arial', 'B', 12)
pdf.cell(0, 10, 'Summary:', 0, 1)
pdf.set_font('Arial', '', 10)
pdf.multi_cell(0, 10, analysis_result['summary'])
# Save to temporary file
temp_dir = tempfile.gettempdir()
pdf_path = os.path.join(temp_dir, 'analysis_report.pdf')
pdf.output(pdf_path)
return pdf_path
def process_content(input_text, mode, theme, progress=gr.Progress()):
"""Main processing function with progress updates."""
try:
# Check cache
cache_key = f"{input_text}_{mode}"
if cache_key in analysis_cache:
return (
analysis_cache[cache_key],
"Content preview unavailable for cached results",
"Using cached results",
None
)
# Process in steps
progress(0, desc="Initializing analysis...")
time.sleep(0.5) # Simulate processing
progress(0.3, desc="Fetching content...")
result = analyzer(input_text, mode)
analysis_result = json.loads(result)
progress(0.6, desc="Analyzing content...")
# Create visualization if sentiment mode
chart = None
if mode == "sentiment" and analysis_result.get('status') == 'success':
progress(0.8, desc="Generating visualizations...")
chart = create_sentiment_chart(analysis_result['sentiment_analysis'])
# Cache results
analysis_cache[cache_key] = analysis_result
# Generate preview text
preview = analysis_result.get('stats', {}).get('title', '')
if 'summary' in analysis_result:
preview += f"\n\nSummary:\n{analysis_result['summary']}"
progress(1.0, desc="Complete!")
return analysis_result, preview, "Analysis complete!", chart
except Exception as e:
return (
{"status": "error", "message": str(e)},
"Error occurred",
f"Error: {str(e)}",
None
)
def create_interface():
with gr.Blocks(title="Smart Web Analyzer Plus", theme=gr.themes.Base()) as iface:
# Header
gr.Markdown("# π Smart Web Analyzer Plus")
gr.Markdown("""
Advanced content analysis with AI-powered insights:
* π Comprehensive Analysis
* π Detailed Sentiment Analysis
* π Smart Summarization
* π― Topic Detection
""")
# Theme toggle
with gr.Row():
theme = gr.Radio(
choices=["light", "dark"],
value="light",
label="Theme",
interactive=True
)
# Main content
with gr.Tabs():
# Analysis Tab
with gr.Tab("Analysis"):
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="URL or Text to Analyze",
placeholder="Enter URL or paste text",
lines=5
)
mode = gr.Radio(
choices=["analyze", "summarize", "sentiment", "topics"],
value="analyze",
label="Analysis Mode"
)
analyze_btn = gr.Button("π Analyze", variant="primary")
status = gr.Markdown("Status: Ready")
with gr.Column():
results = gr.JSON(label="Analysis Results")
chart = gr.Plot(label="Visualization", visible=False)
# Show/hide chart based on mode
mode.change(
lambda m: gr.update(visible=(m == "sentiment")),
inputs=[mode],
outputs=[chart]
)
# Preview Tab
with gr.Tab("Preview"):
preview = gr.Textbox(
label="Content Preview",
lines=10,
interactive=False
)
# Report Tab
with gr.Tab("Report"):
download_btn = gr.Button("π₯ Download PDF Report")
pdf_output = gr.File(label="Generated Report")
# Examples
gr.Examples(
examples=[
["https://www.artificialintelligence-news.com/2024/02/14/openai-anthropic-google-white-house-red-teaming/", "analyze", "light"],
["https://www.artificialintelligence-news.com/2024/02/13/ai-21-labs-wordtune-chatgpt-plugin/", "sentiment", "light"]
],
inputs=[input_text, mode, theme],
outputs=[results, preview, status, chart],
fn=process_content,
cache_examples=True
)
# Handle theme changes
theme.change(
lambda t: gr.update(theme=gr.themes.Base() if t == "light" else gr.themes.Soft()),
inputs=[theme],
outputs=[iface]
)
# Wire up the analysis button
analyze_btn.click(
fn=process_content,
inputs=[input_text, mode, theme],
outputs=[results, preview, status, chart]
)
# Wire up PDF download
download_btn.click(
fn=lambda: generate_pdf_report(json.loads(results.value)),
inputs=[],
outputs=[pdf_output]
)
return iface
demo = create_interface()
demo.launch()
|