File size: 5,078 Bytes
8cc50db
 
eadc0a8
b35bc08
8cc50db
 
 
eadc0a8
 
8cc50db
 
b35bc08
8cc50db
 
 
 
 
 
 
 
 
7df49c3
8cc50db
 
 
7df49c3
8cc50db
 
 
7df49c3
8cc50db
eadc0a8
8cc50db
eadc0a8
 
 
 
 
7df49c3
eadc0a8
8cc50db
 
 
eadc0a8
 
 
7df49c3
eadc0a8
8cc50db
7df49c3
eadc0a8
8cc50db
eadc0a8
7df49c3
eadc0a8
8cc50db
eadc0a8
 
 
 
 
 
7df49c3
eadc0a8
8cc50db
eadc0a8
 
 
 
 
7df49c3
eadc0a8
8cc50db
 
eadc0a8
8cc50db
eadc0a8
8cc50db
eadc0a8
 
 
 
 
7df49c3
eadc0a8
7df49c3
8cc50db
 
eadc0a8
 
 
 
7df49c3
8cc50db
 
 
 
 
 
 
 
 
7df49c3
eadc0a8
 
 
 
 
 
 
 
 
 
 
7df49c3
8cc50db
7df49c3
eadc0a8
8cc50db
 
 
eadc0a8
7df49c3
 
8cc50db
 
 
 
 
 
 
 
 
7df49c3
eadc0a8
8cc50db
7df49c3
8cc50db
eadc0a8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# app.py
"""
Gradio App for Smart Web Analyzer Plus - Human-Readable Outputs

Key Features:
- Accepts a URL
- Lets users select analysis modes (Clean Text, Summarization, Sentiment, Topic)
- Fetches and processes content (smart_web_analyzer.py)
- Displays each result in its own tab for readability
- Includes example URLs
"""

import gradio as gr
from smart_web_analyzer import (
    fetch_web_content,
    clean_text,
    summarize_text,
    analyze_sentiment,
    detect_topic,
    preview_clean_text,
)

def analyze_url(url, modes):
    """
    Fetches web content and performs selected analyses (modes).
    
    Parameters:
        url (str): URL to analyze
        modes (list): list of selected modes
    
    Returns:
        tuple of str: (clean_text_result, summarization_result, sentiment_result, topics_result)
    """
    # Default messages if a mode is not selected
    clean_text_result = "Mode not selected."
    summarization_result = "Mode not selected."
    sentiment_result = "Mode not selected."
    topics_result = "Mode not selected."
    
    # 1) Fetch/clean the web content
    try:
        html_content = fetch_web_content(url)
    except Exception as e:
        # Return the error in each field for clarity
        error_msg = f"**Error fetching URL**: {e}"
        return (error_msg, error_msg, error_msg, error_msg)
    
    # Clean the text (keeping <script> and <style>)
    cleaned = clean_text(html_content)
    
    # 2) If the user requested a text preview
    if "Clean Text Preview" in modes:
        clean_text_result = preview_clean_text(cleaned, max_chars=500)
    
    # 3) Summarization
    if "Summarization" in modes:
        result = summarize_text(cleaned)
        # If the result starts with "Error", we can highlight it
        if isinstance(result, str) and "Error" in result:
            summarization_result = f"**Error during summarization**: {result}"
        else:
            summarization_result = result
    
    # 4) Sentiment Analysis
    if "Sentiment Analysis" in modes:
        result = analyze_sentiment(cleaned)
        if isinstance(result, str) and "Error" in result:
            sentiment_result = f"**Error during sentiment analysis**: {result}"
        else:
            sentiment_result = f"**Predicted Sentiment**: {result}"
    
    # 5) Topic Detection
    if "Topic Detection" in modes:
        topics = detect_topic(cleaned)
        # Check if there's an error
        if isinstance(topics, dict) and "error" in topics:
            topics_result = f"**Error during topic detection**: {topics['error']}"
        else:
            # Format the topics into a readable string
            formatted = ""
            for t, score in topics.items():
                formatted += f"- **{t}**: {score:.2f}\n"
            topics_result = formatted if formatted else "No topics detected."
    
    return (clean_text_result, summarization_result, sentiment_result, topics_result)

def build_app():
    with gr.Blocks(title="Smart Web Analyzer Plus") as demo:
        gr.Markdown("## Smart Web Analyzer Plus\n"
                    "Analyze web content for **summarization**, **sentiment**, and **topics**. "
                    "Choose your analysis modes and enter a URL below.")

        with gr.Row():
            url_input = gr.Textbox(
                label="Enter URL",
                placeholder="https://example.com",
                lines=1
            )
            mode_selector = gr.CheckboxGroup(
                label="Select Analysis Modes",
                choices=["Clean Text Preview", "Summarization", "Sentiment Analysis", "Topic Detection"],
                value=["Clean Text Preview", "Summarization", "Sentiment Analysis", "Topic Detection"]
            )

        # We'll display results in separate tabs for clarity
        with gr.Tabs():
            with gr.Tab("Clean Text Preview"):
                preview_output = gr.Markdown()
            with gr.Tab("Summarization"):
                summary_output = gr.Markdown()
            with gr.Tab("Sentiment Analysis"):
                sentiment_output = gr.Markdown()
            with gr.Tab("Topic Detection"):
                topic_output = gr.Markdown()
        
        analyze_button = gr.Button("Analyze")
        
        # The "analyze_url" function returns a tuple of four strings
        analyze_button.click(
            fn=analyze_url,
            inputs=[url_input, mode_selector],
            outputs=[preview_output, summary_output, sentiment_output, topic_output]
        )
        
        # Example URLs
        gr.Markdown("### Example URLs")
        gr.Examples(
            examples=[
                ["https://www.artificialintelligence-news.com/2024/02/14/openai-anthropic-google-white-house-red-teaming/"],
                ["https://www.artificialintelligence-news.com/2024/02/13/ai-21-labs-wordtune-chatgpt-plugin/"]
            ],
            inputs=url_input,
            label="Click an example to analyze"
        )
    
    return demo

if __name__ == "__main__":
    demo = build_app()
    demo.launch()