File size: 4,069 Bytes
9346f1c
8b28d2b
9346f1c
4596a70
2a5f9fb
 
1ffc326
8c49cb6
 
 
 
 
 
976f398
df66f6e
 
 
 
 
 
 
 
9d22eee
5c1f78d
df66f6e
71d6be9
170ba5c
8c49cb6
2a73469
10f9b3c
50df158
d084b26
5c1f78d
8b28d2b
d084b26
d614158
d084b26
71d6be9
d614158
5c1f78d
 
 
 
d084b26
 
 
26286b2
d614158
 
 
71d6be9
d614158
 
 
 
 
 
 
 
a885f09
5c1f78d
d614158
 
614ee1f
8b28d2b
 
 
 
 
 
 
 
 
 
 
6ec6db3
8b28d2b
 
6ec6db3
 
47f11bf
 
 
 
 
 
 
5c1f78d
8b28d2b
 
 
 
d2179b0
7644705
01233b7
 
58733e4
6e8f400
10f9b3c
8cb7546
d614158
 
 
d580860
d614158
f2bc0a5
613696b
6e8f400
0227006
d16cee2
 
 
 
 
67109fc
d16cee2
adb0416
 
d16cee2
10f9b3c
a2790cb
10f9b3c
dd4dcf8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision,
)
from src.envs import API, EVAL_RESULTS_PATH_CDM, EVAL_RESULTS_PATH_CDM_FI, REPO_ID, RESULTS_REPO_CDM, RESULTS_REPO_CDM_FI, TOKEN
from src.populate import get_leaderboard_df


def restart_space():
    API.restart_space(repo_id=REPO_ID)


### Space initialisation
try:
    print(EVAL_RESULTS_PATH_CDM)
    snapshot_download(
        repo_id=RESULTS_REPO_CDM,
        local_dir=EVAL_RESULTS_PATH_CDM,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()

try:
    print(EVAL_RESULTS_PATH_CDM_FI)
    snapshot_download(
        repo_id=RESULTS_REPO_CDM_FI,
        local_dir=EVAL_RESULTS_PATH_CDM_FI,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()


LEADERBOARD_DF_CDM = get_leaderboard_df(EVAL_RESULTS_PATH_CDM, COLS, BENCHMARK_COLS)
LEADERBOARD_DF_CDM_FI = get_leaderboard_df(EVAL_RESULTS_PATH_CDM_FI, COLS, BENCHMARK_COLS)

def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
            # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
            # ColumnFilter(
            #     AutoEvalColumn.params.name,
            #     type="slider",
            #     min=0.01,
            #     max=150,
            #     label="Select the number of parameters (B)",
            # ),
            ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("MIMIC CDM", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF_CDM)

        with gr.TabItem("MIMIC CDM FI", elem_id="llm-benchmark-tab-table", id=1):
            leaderboard = init_leaderboard(LEADERBOARD_DF_CDM_FI)

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(share=True)