Spaces:
Running
Running
Paul Hager
commited on
Commit
·
37b23b1
1
Parent(s):
44e7954
claude test
Browse files- app.py +12 -15
- src/display/utils.py +19 -11
- src/leaderboard/read_evals.py +23 -21
app.py
CHANGED
@@ -23,7 +23,15 @@ from src.display.utils import (
|
|
23 |
WeightType,
|
24 |
Precision,
|
25 |
)
|
26 |
-
from src.envs import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
from src.populate import get_leaderboard_df
|
28 |
|
29 |
|
@@ -62,6 +70,7 @@ except Exception:
|
|
62 |
LEADERBOARD_DF_CDM = get_leaderboard_df(EVAL_RESULTS_PATH_CDM, COLS, BENCHMARK_COLS)
|
63 |
LEADERBOARD_DF_CDM_FI = get_leaderboard_df(EVAL_RESULTS_PATH_CDM_FI, COLS, BENCHMARK_COLS)
|
64 |
|
|
|
65 |
def init_leaderboard(dataframe):
|
66 |
if dataframe is None or dataframe.empty:
|
67 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
@@ -74,18 +83,6 @@ def init_leaderboard(dataframe):
|
|
74 |
label="Select Columns to Display:",
|
75 |
),
|
76 |
search_columns=[AutoEvalColumn.model.name],
|
77 |
-
# hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
78 |
-
# filter_columns=[
|
79 |
-
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
80 |
-
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
81 |
-
# ColumnFilter(
|
82 |
-
# AutoEvalColumn.seq_length.name,
|
83 |
-
# type="checkboxgroup",
|
84 |
-
# label="Sequence Lengths",
|
85 |
-
# )
|
86 |
-
# ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
|
87 |
-
# ],
|
88 |
-
# bool_checkboxgroup_label="Hide models",
|
89 |
interactive=False,
|
90 |
)
|
91 |
|
@@ -97,10 +94,10 @@ with demo:
|
|
97 |
|
98 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
99 |
with gr.TabItem("MIMIC CDM", elem_id="llm-benchmark-tab-table", id=0):
|
100 |
-
|
101 |
|
102 |
with gr.TabItem("MIMIC CDM FI", elem_id="llm-benchmark-tab-table", id=1):
|
103 |
-
|
104 |
|
105 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
106 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
23 |
WeightType,
|
24 |
Precision,
|
25 |
)
|
26 |
+
from src.envs import (
|
27 |
+
API,
|
28 |
+
EVAL_RESULTS_PATH_CDM,
|
29 |
+
EVAL_RESULTS_PATH_CDM_FI,
|
30 |
+
REPO_ID,
|
31 |
+
RESULTS_REPO_CDM,
|
32 |
+
RESULTS_REPO_CDM_FI,
|
33 |
+
TOKEN,
|
34 |
+
)
|
35 |
from src.populate import get_leaderboard_df
|
36 |
|
37 |
|
|
|
70 |
LEADERBOARD_DF_CDM = get_leaderboard_df(EVAL_RESULTS_PATH_CDM, COLS, BENCHMARK_COLS)
|
71 |
LEADERBOARD_DF_CDM_FI = get_leaderboard_df(EVAL_RESULTS_PATH_CDM_FI, COLS, BENCHMARK_COLS)
|
72 |
|
73 |
+
|
74 |
def init_leaderboard(dataframe):
|
75 |
if dataframe is None or dataframe.empty:
|
76 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
|
83 |
label="Select Columns to Display:",
|
84 |
),
|
85 |
search_columns=[AutoEvalColumn.model.name],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
interactive=False,
|
87 |
)
|
88 |
|
|
|
94 |
|
95 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
96 |
with gr.TabItem("MIMIC CDM", elem_id="llm-benchmark-tab-table", id=0):
|
97 |
+
leaderboard_cdm = init_leaderboard(LEADERBOARD_DF_CDM)
|
98 |
|
99 |
with gr.TabItem("MIMIC CDM FI", elem_id="llm-benchmark-tab-table", id=1):
|
100 |
+
leaderboard_cdm_fi = init_leaderboard(LEADERBOARD_DF_CDM_FI)
|
101 |
|
102 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
103 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
src/display/utils.py
CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
|
|
8 |
def fields(raw_class):
|
9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
|
@@ -20,15 +21,16 @@ class ColumnContent:
|
|
20 |
hidden: bool = False
|
21 |
never_hidden: bool = False
|
22 |
|
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
-
#Scores
|
29 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
for task in Tasks:
|
31 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
# Model information
|
33 |
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
@@ -37,7 +39,9 @@ auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Arch
|
|
37 |
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
auto_eval_column_dict.append(["seq_length", ColumnContent, ColumnContent("Max Sequence Length", "number", False)])
|
40 |
-
auto_eval_column_dict.append(
|
|
|
|
|
41 |
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
42 |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
43 |
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
@@ -45,6 +49,7 @@ auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Avai
|
|
45 |
# We use make dataclass to dynamically fill the scores from Tasks
|
46 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
47 |
|
|
|
48 |
## For the queue columns in the submission tab
|
49 |
@dataclass(frozen=True)
|
50 |
class EvalQueueColumn: # Queue column
|
@@ -55,12 +60,13 @@ class EvalQueueColumn: # Queue column
|
|
55 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
56 |
status = ColumnContent("status", "str", True)
|
57 |
|
|
|
58 |
## All the model information that we might need
|
59 |
@dataclass
|
60 |
class ModelDetails:
|
61 |
name: str
|
62 |
display_name: str = ""
|
63 |
-
symbol: str = ""
|
64 |
|
65 |
|
66 |
class ModelType(Enum):
|
@@ -85,18 +91,20 @@ class ModelType(Enum):
|
|
85 |
return ModelType.IFT
|
86 |
return ModelType.Unknown
|
87 |
|
|
|
88 |
class WeightType(Enum):
|
89 |
Adapter = ModelDetails("Adapter")
|
90 |
Original = ModelDetails("Original")
|
91 |
Delta = ModelDetails("Delta")
|
92 |
|
|
|
93 |
class Precision(Enum):
|
94 |
float16 = ModelDetails("float16")
|
95 |
bfloat16 = ModelDetails("bfloat16")
|
96 |
float32 = ModelDetails("float32")
|
97 |
-
#qt_8bit = ModelDetails("8bit")
|
98 |
-
#qt_4bit = ModelDetails("4bit")
|
99 |
-
#qt_GPTQ = ModelDetails("GPTQ")
|
100 |
Unknown = ModelDetails("?")
|
101 |
|
102 |
def from_str(precision):
|
@@ -106,14 +114,15 @@ class Precision(Enum):
|
|
106 |
return Precision.bfloat16
|
107 |
if precision in ["float32"]:
|
108 |
return Precision.float32
|
109 |
-
#if precision in ["8bit"]:
|
110 |
# return Precision.qt_8bit
|
111 |
-
#if precision in ["4bit"]:
|
112 |
# return Precision.qt_4bit
|
113 |
-
#if precision in ["GPTQ", "None"]:
|
114 |
# return Precision.qt_GPTQ
|
115 |
return Precision.Unknown
|
116 |
|
|
|
117 |
# Column selection
|
118 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
119 |
|
@@ -121,4 +130,3 @@ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
|
121 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
122 |
|
123 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
124 |
-
|
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
8 |
+
|
9 |
def fields(raw_class):
|
10 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
11 |
|
|
|
21 |
hidden: bool = False
|
22 |
never_hidden: bool = False
|
23 |
|
24 |
+
|
25 |
## Leaderboard columns
|
26 |
auto_eval_column_dict = []
|
27 |
# Init
|
28 |
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
30 |
+
# Scores
|
31 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
32 |
for task in Tasks:
|
33 |
+
auto_eval_column_dict.append([task.value.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
34 |
# Model information
|
35 |
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
36 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
|
|
39 |
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
40 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
41 |
auto_eval_column_dict.append(["seq_length", ColumnContent, ColumnContent("Max Sequence Length", "number", False)])
|
42 |
+
auto_eval_column_dict.append(
|
43 |
+
["model_quantization_bits", ColumnContent, ColumnContent("Quantization Bits", "number", False)]
|
44 |
+
)
|
45 |
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
46 |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
47 |
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
|
|
49 |
# We use make dataclass to dynamically fill the scores from Tasks
|
50 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
51 |
|
52 |
+
|
53 |
## For the queue columns in the submission tab
|
54 |
@dataclass(frozen=True)
|
55 |
class EvalQueueColumn: # Queue column
|
|
|
60 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
61 |
status = ColumnContent("status", "str", True)
|
62 |
|
63 |
+
|
64 |
## All the model information that we might need
|
65 |
@dataclass
|
66 |
class ModelDetails:
|
67 |
name: str
|
68 |
display_name: str = ""
|
69 |
+
symbol: str = "" # emoji
|
70 |
|
71 |
|
72 |
class ModelType(Enum):
|
|
|
91 |
return ModelType.IFT
|
92 |
return ModelType.Unknown
|
93 |
|
94 |
+
|
95 |
class WeightType(Enum):
|
96 |
Adapter = ModelDetails("Adapter")
|
97 |
Original = ModelDetails("Original")
|
98 |
Delta = ModelDetails("Delta")
|
99 |
|
100 |
+
|
101 |
class Precision(Enum):
|
102 |
float16 = ModelDetails("float16")
|
103 |
bfloat16 = ModelDetails("bfloat16")
|
104 |
float32 = ModelDetails("float32")
|
105 |
+
# qt_8bit = ModelDetails("8bit")
|
106 |
+
# qt_4bit = ModelDetails("4bit")
|
107 |
+
# qt_GPTQ = ModelDetails("GPTQ")
|
108 |
Unknown = ModelDetails("?")
|
109 |
|
110 |
def from_str(precision):
|
|
|
114 |
return Precision.bfloat16
|
115 |
if precision in ["float32"]:
|
116 |
return Precision.float32
|
117 |
+
# if precision in ["8bit"]:
|
118 |
# return Precision.qt_8bit
|
119 |
+
# if precision in ["4bit"]:
|
120 |
# return Precision.qt_4bit
|
121 |
+
# if precision in ["GPTQ", "None"]:
|
122 |
# return Precision.qt_GPTQ
|
123 |
return Precision.Unknown
|
124 |
|
125 |
+
|
126 |
# Column selection
|
127 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
128 |
|
|
|
130 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
131 |
|
132 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
|
src/leaderboard/read_evals.py
CHANGED
@@ -13,28 +13,35 @@ from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, Weigh
|
|
13 |
from transformers import AutoConfig
|
14 |
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
15 |
|
16 |
-
|
|
|
|
|
|
|
17 |
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
18 |
try:
|
19 |
-
config = AutoConfig.from_pretrained(
|
|
|
|
|
20 |
if test_tokenizer:
|
21 |
try:
|
22 |
-
tk = AutoTokenizer.from_pretrained(
|
|
|
|
|
23 |
except ValueError as e:
|
|
|
|
|
24 |
return (
|
25 |
False,
|
26 |
-
|
27 |
-
None
|
28 |
)
|
29 |
-
except Exception as e:
|
30 |
-
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
31 |
return True, None, config
|
32 |
|
33 |
except ValueError:
|
34 |
return (
|
35 |
False,
|
36 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
37 |
-
None
|
38 |
)
|
39 |
|
40 |
except Exception as e:
|
@@ -116,7 +123,6 @@ class EvalResult:
|
|
116 |
model_quantization_bits = config.get("model_quantization_bits", 0)
|
117 |
# print(self.seq_length)
|
118 |
|
119 |
-
|
120 |
return self(
|
121 |
eval_name=result_key,
|
122 |
full_model=full_model,
|
@@ -128,7 +134,7 @@ class EvalResult:
|
|
128 |
still_on_hub=still_on_hub,
|
129 |
architecture=architecture,
|
130 |
seq_length=seq_length,
|
131 |
-
model_quantization_bits=model_quantization_bits
|
132 |
)
|
133 |
|
134 |
def update_with_request_file(self, requests_path):
|
@@ -151,28 +157,24 @@ class EvalResult:
|
|
151 |
|
152 |
def to_dict(self):
|
153 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
154 |
-
# print(self.seq_length)
|
155 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
156 |
data_dict = {
|
157 |
-
"eval_name": self.eval_name, # not a column, just a save name
|
158 |
-
# AutoEvalColumn.precision.name: self.precision.value.name,
|
159 |
-
# AutoEvalColumn.model_type.name: self.model_type.value.name,
|
160 |
-
# AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
161 |
-
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
162 |
AutoEvalColumn.architecture.name: self.architecture,
|
163 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
164 |
-
|
165 |
-
AutoEvalColumn.average.name: average,
|
166 |
-
# AutoEvalColumn.license.name: self.license,
|
167 |
-
# AutoEvalColumn.likes.name: self.likes,
|
168 |
AutoEvalColumn.params.name: self.params,
|
169 |
AutoEvalColumn.seq_length.name: self.seq_length,
|
170 |
AutoEvalColumn.model_quantization_bits.name: self.model_quantization_bits,
|
171 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
172 |
}
|
173 |
|
|
|
174 |
for task in Tasks:
|
175 |
-
|
|
|
|
|
|
|
176 |
|
177 |
return data_dict
|
178 |
|
|
|
13 |
from transformers import AutoConfig
|
14 |
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
15 |
|
16 |
+
|
17 |
+
def is_model_on_hub(
|
18 |
+
model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False
|
19 |
+
) -> tuple[bool, str]:
|
20 |
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
21 |
try:
|
22 |
+
config = AutoConfig.from_pretrained(
|
23 |
+
model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
|
24 |
+
)
|
25 |
if test_tokenizer:
|
26 |
try:
|
27 |
+
tk = AutoTokenizer.from_pretrained(
|
28 |
+
model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
|
29 |
+
)
|
30 |
except ValueError as e:
|
31 |
+
return (False, f"uses a tokenizer which is not in a transformers release: {e}", None)
|
32 |
+
except Exception as e:
|
33 |
return (
|
34 |
False,
|
35 |
+
"'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
|
36 |
+
None,
|
37 |
)
|
|
|
|
|
38 |
return True, None, config
|
39 |
|
40 |
except ValueError:
|
41 |
return (
|
42 |
False,
|
43 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
44 |
+
None,
|
45 |
)
|
46 |
|
47 |
except Exception as e:
|
|
|
123 |
model_quantization_bits = config.get("model_quantization_bits", 0)
|
124 |
# print(self.seq_length)
|
125 |
|
|
|
126 |
return self(
|
127 |
eval_name=result_key,
|
128 |
full_model=full_model,
|
|
|
134 |
still_on_hub=still_on_hub,
|
135 |
architecture=architecture,
|
136 |
seq_length=seq_length,
|
137 |
+
model_quantization_bits=model_quantization_bits,
|
138 |
)
|
139 |
|
140 |
def update_with_request_file(self, requests_path):
|
|
|
157 |
|
158 |
def to_dict(self):
|
159 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
160 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
161 |
data_dict = {
|
162 |
+
"eval_name": self.eval_name, # not a column, just a save name
|
|
|
|
|
|
|
|
|
163 |
AutoEvalColumn.architecture.name: self.architecture,
|
164 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
165 |
+
AutoEvalColumn.average.name: round(average, 2), # Round to 2 decimal places
|
|
|
|
|
|
|
166 |
AutoEvalColumn.params.name: self.params,
|
167 |
AutoEvalColumn.seq_length.name: self.seq_length,
|
168 |
AutoEvalColumn.model_quantization_bits.name: self.model_quantization_bits,
|
169 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
170 |
}
|
171 |
|
172 |
+
# Add task results
|
173 |
for task in Tasks:
|
174 |
+
if task.value.benchmark in self.results:
|
175 |
+
data_dict[task.value.col_name] = round(self.results[task.value.benchmark], 2)
|
176 |
+
else:
|
177 |
+
data_dict[task.value.col_name] = None
|
178 |
|
179 |
return data_dict
|
180 |
|