Spaces:
Running
Running
Paul Hager
commited on
Commit
·
5f8b961
1
Parent(s):
5a6d6fb
check
Browse files- app.py +34 -20
- src/display/utils.py +4 -4
- src/populate.py +39 -6
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard,
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
from huggingface_hub import snapshot_download
|
@@ -73,33 +73,44 @@ LEADERBOARD_DF_CDM_FI = get_leaderboard_df(EVAL_RESULTS_PATH_CDM_FI, COLS, BENCH
|
|
73 |
|
74 |
def init_leaderboard(dataframe):
|
75 |
if dataframe is None or dataframe.empty:
|
76 |
-
|
77 |
-
|
78 |
-
value=
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
demo = gr.Blocks(css=custom_css)
|
|
|
91 |
with demo:
|
92 |
gr.HTML(TITLE)
|
93 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
94 |
|
95 |
-
with gr.Tabs(
|
96 |
-
with gr.
|
97 |
leaderboard_cdm = init_leaderboard(LEADERBOARD_DF_CDM)
|
98 |
|
99 |
-
with gr.
|
100 |
leaderboard_cdm_fi = init_leaderboard(LEADERBOARD_DF_CDM_FI)
|
101 |
|
102 |
-
with gr.
|
103 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
104 |
|
105 |
with gr.Row():
|
@@ -112,7 +123,10 @@ with demo:
|
|
112 |
show_copy_button=True,
|
113 |
)
|
114 |
|
|
|
115 |
scheduler = BackgroundScheduler()
|
116 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
117 |
scheduler.start()
|
118 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, SelectColumns
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
from huggingface_hub import snapshot_download
|
|
|
73 |
|
74 |
def init_leaderboard(dataframe):
|
75 |
if dataframe is None or dataframe.empty:
|
76 |
+
print("Warning: Empty dataframe provided to leaderboard")
|
77 |
+
# Return a simple empty dataframe instead of trying to create a custom one
|
78 |
+
return gr.Dataframe(value=pd.DataFrame())
|
79 |
+
|
80 |
+
print(f"Initializing leaderboard with {len(dataframe)} rows")
|
81 |
+
print(f"Columns: {dataframe.columns.tolist()}")
|
82 |
+
|
83 |
+
# Convert dataframe to ensure proper types
|
84 |
+
for col in dataframe.columns:
|
85 |
+
if col in ["average", "params"] + [t.value.col_name for t in Tasks]:
|
86 |
+
dataframe[col] = pd.to_numeric(dataframe[col], errors="coerce")
|
87 |
+
elif col == "still_on_hub":
|
88 |
+
dataframe[col] = dataframe[col].astype(bool)
|
89 |
+
else:
|
90 |
+
dataframe[col] = dataframe[col].astype(str)
|
91 |
+
|
92 |
+
try:
|
93 |
+
return gr.Dataframe(value=dataframe, interactive=False, wrap=True)
|
94 |
+
except Exception as e:
|
95 |
+
print(f"Error initializing leaderboard: {e}")
|
96 |
+
return gr.Dataframe(value=pd.DataFrame())
|
97 |
+
|
98 |
+
|
99 |
+
# Initialize the app
|
100 |
demo = gr.Blocks(css=custom_css)
|
101 |
+
|
102 |
with demo:
|
103 |
gr.HTML(TITLE)
|
104 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
105 |
|
106 |
+
with gr.Tabs() as tabs:
|
107 |
+
with gr.Tab("MIMIC CDM"):
|
108 |
leaderboard_cdm = init_leaderboard(LEADERBOARD_DF_CDM)
|
109 |
|
110 |
+
with gr.Tab("MIMIC CDM FI"):
|
111 |
leaderboard_cdm_fi = init_leaderboard(LEADERBOARD_DF_CDM_FI)
|
112 |
|
113 |
+
with gr.Tab("📝 About"):
|
114 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
115 |
|
116 |
with gr.Row():
|
|
|
123 |
show_copy_button=True,
|
124 |
)
|
125 |
|
126 |
+
# Start the scheduler
|
127 |
scheduler = BackgroundScheduler()
|
128 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
129 |
scheduler.start()
|
130 |
+
|
131 |
+
# Launch the app
|
132 |
+
demo.queue(default_concurrency_limit=40).launch()
|
src/display/utils.py
CHANGED
@@ -26,18 +26,18 @@ class ColumnContent:
|
|
26 |
auto_eval_column_dict = []
|
27 |
# Init
|
28 |
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
29 |
-
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "
|
30 |
# Scores
|
31 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "
|
32 |
for task in Tasks:
|
33 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "
|
34 |
# Model information
|
35 |
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
36 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
37 |
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
38 |
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
39 |
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
40 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "
|
41 |
auto_eval_column_dict.append(["seq_length", ColumnContent, ColumnContent("Max Sequence Length", "number", False)])
|
42 |
auto_eval_column_dict.append(
|
43 |
["model_quantization_bits", ColumnContent, ColumnContent("Quantization Bits", "number", False)]
|
|
|
26 |
auto_eval_column_dict = []
|
27 |
# Init
|
28 |
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
29 |
+
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "str", True, never_hidden=True)])
|
30 |
# Scores
|
31 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "float", True)])
|
32 |
for task in Tasks:
|
33 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "float", True)])
|
34 |
# Model information
|
35 |
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
36 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
37 |
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
38 |
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
39 |
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
40 |
+
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "float", False)])
|
41 |
auto_eval_column_dict.append(["seq_length", ColumnContent, ColumnContent("Max Sequence Length", "number", False)])
|
42 |
auto_eval_column_dict.append(
|
43 |
["model_quantization_bits", ColumnContent, ColumnContent("Quantization Bits", "number", False)]
|
src/populate.py
CHANGED
@@ -11,15 +11,48 @@ from src.leaderboard.read_evals import get_raw_eval_results
|
|
11 |
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
raw_data = get_raw_eval_results(results_path)
|
|
|
|
|
|
|
|
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
|
11 |
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
raw_data = get_raw_eval_results(results_path)
|
14 |
+
if not raw_data:
|
15 |
+
print(f"Warning: No results found in {results_path}")
|
16 |
+
return pd.DataFrame(columns=cols)
|
17 |
+
|
18 |
all_data_json = [v.to_dict() for v in raw_data]
|
19 |
|
20 |
+
try:
|
21 |
+
df = pd.DataFrame.from_records(all_data_json)
|
22 |
+
|
23 |
+
# Ensure all required columns exist with proper types
|
24 |
+
for col in cols:
|
25 |
+
if col not in df.columns:
|
26 |
+
df[col] = None
|
27 |
+
|
28 |
+
# Convert numeric columns
|
29 |
+
numeric_cols = ["average", "params"] + [t.value.col_name for t in Tasks]
|
30 |
+
for col in numeric_cols:
|
31 |
+
if col in df.columns:
|
32 |
+
df[col] = pd.to_numeric(df[col], errors="coerce")
|
33 |
+
|
34 |
+
# Convert boolean columns
|
35 |
+
if "still_on_hub" in df.columns:
|
36 |
+
df["still_on_hub"] = df["still_on_hub"].astype(bool)
|
37 |
+
|
38 |
+
# Convert string columns
|
39 |
+
string_cols = ["model", "architecture"]
|
40 |
+
for col in string_cols:
|
41 |
+
if col in df.columns:
|
42 |
+
df[col] = df[col].astype(str)
|
43 |
+
|
44 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
45 |
+
df = df[cols].round(decimals=2)
|
46 |
+
|
47 |
+
# filter out if any of the benchmarks have not been produced
|
48 |
+
df = df[has_no_nan_values(df, benchmark_cols)]
|
49 |
|
50 |
+
print(f"Loaded {len(df)} results from {results_path}")
|
51 |
+
print(f"Columns: {df.columns.tolist()}")
|
52 |
+
return df
|
53 |
+
except Exception as e:
|
54 |
+
print(f"Error creating dataframe: {e}")
|
55 |
+
return pd.DataFrame(columns=cols)
|
56 |
|
57 |
|
58 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|