Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,21 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
-
|
| 4 |
# TO-DD: ??? λΆλΆμ μ½λλ₯Ό μμ±νμμ€
|
| 5 |
-
pipeline =
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
st.title("Hot Dog? Or Not?")
|
| 8 |
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
col1, col2 = st.columns(2)
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
# TO-DO: ??? λΆλΆμ μ½λλ₯Ό μμ±νμμ€
|
| 17 |
-
predictions = pipeline(image)
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
+
|
| 4 |
# TO-DD: ??? λΆλΆμ μ½λλ₯Ό μμ±νμμ€
|
| 5 |
+
pipeline = AutoModelForCausalLM.from_pretrained(task="translation", model="maywell/Synatra-7B-v0.3-Translation", tokenizer="maywell/Synatra-7B-v0.3-Translation")
|
| 6 |
+
|
| 7 |
+
device = "cuda" # the device to load the model onto
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
+
messages = [
|
| 11 |
+
{"role": "user", "content": "λ°λλλ μλ νμμμ΄μΌ?"},
|
| 12 |
+
]
|
| 13 |
|
| 14 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
|
|
|
| 15 |
|
| 16 |
+
model_inputs = encodeds.to(device)
|
| 17 |
+
model.to(device)
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
| 20 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
| 21 |
+
print(decoded[0])
|