Spaces:
Sleeping
Sleeping
File size: 7,457 Bytes
8700a34 574f9e3 6bbd3ca bda7361 c39e604 af17670 e36dd54 70678a5 836458e 86a0b7a 6bbd3ca bda7361 0f0bcd2 6fcf927 539adb3 686167b a90d0cf cfd8768 574f9e3 bda7361 574f9e3 6bbd3ca 574f9e3 6bbd3ca 574f9e3 6bbd3ca a82199b 6bbd3ca c39e604 bda7361 574f9e3 bda7361 574f9e3 420d3c9 bda7361 41d335c 574f9e3 41d335c 574f9e3 f198fb3 574f9e3 f8ec4b3 574f9e3 0ddbc70 574f9e3 0ddbc70 f660b8b 0ddbc70 1106695 0ddbc70 574f9e3 0ddbc70 574f9e3 0ddbc70 3302f65 539adb3 20f087e 539adb3 26decc6 539adb3 42a6b89 d167323 a90d0cf 0a12a49 11d5e31 0a12a49 11d5e31 0a12a49 11d5e31 0a12a49 a90d0cf 42a6b89 cfd8768 70678a5 cfd8768 70678a5 cfd8768 70678a5 cfd8768 70678a5 36dea63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import fitz
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse
from transformers import pipeline
from PIL import Image
from io import BytesIO
from starlette.middleware import Middleware
from starlette.middleware.cors import CORSMiddleware
from pdf2image import convert_from_bytes
from pydub import AudioSegment
app = FastAPI()
# Set up CORS middleware
origins = ["*"] # or specify your list of allowed origins
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
nlp_qa = pipeline("document-question-answering", model="jinhybr/OCR-DocVQA-Donut")
nlp_qa_v2 = pipeline("document-question-answering", model="faisalraza/layoutlm-invoices")
nlp_qa_v3 = pipeline("question-answering", model="deepset/roberta-base-squad2")
nlp_classification = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
nlp_classification_v2 = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
nlp_speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-base")
description = """
## Image-based Document QA
This API performs document question answering using a LayoutLMv2-based model.
### Endpoints:
- **POST /uploadfile/:** Upload an image file to extract text and answer provided questions.
- **POST /pdfQA/:** Provide a PDF file to extract text and answer provided questions.
"""
app = FastAPI(docs_url="/", description=description)
@app.post("/uploadfile/", description="Upload an image file to extract text and answer provided questions.")
async def perform_document_qa(
file: UploadFile = File(...),
questions: str = Form(...),
):
try:
# Read the uploaded file as bytes
contents = await file.read()
# Open the image using PIL
image = Image.open(BytesIO(contents))
# Perform document question answering for each question using LayoutLMv2-based model
answers_dict = {}
for question in questions.split(','):
result = nlp_qa(
image,
question.strip()
)
# Access the 'answer' key from the first item in the result list
answer = result[0]['answer']
# Format the question as a string without extra characters
formatted_question = question.strip("[]")
answers_dict[formatted_question] = answer
return answers_dict
except Exception as e:
return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500)
@app.post("/uploadfilev2/", description="Upload an image file to extract text and answer provided questions.")
async def perform_document_qa(
file: UploadFile = File(...),
questions: str = Form(...),
):
try:
# Read the uploaded file as bytes
contents = await file.read()
# Open the image using PIL
image = Image.open(BytesIO(contents))
# Perform document question answering for each question using LayoutLMv2-based model
answers_dict = {}
for question in questions.split(','):
result = nlp_qa_v2(
image,
question.strip()
)
# Access the 'answer' key from the first item in the result list
answer = result[0]['answer']
# Format the question as a string without extra characters
formatted_question = question.strip("[]")
answers_dict[formatted_question] = answer
return answers_dict
except Exception as e:
return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500)
@app.post("/uploadfilev3/", description="Upload an image file to extract text and answer provided questions.")
async def perform_document_qa(
context: str = Form(...),
question: str = Form(...),
):
try:
QA_input = {
'question': question,
'context': context
}
res = nlp_qa_v3(QA_input)
return res['answer']
except Exception as e:
return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500)
@app.post("/classify/", description="Classify the provided text.")
async def classify_text(text: str = Form(...)):
try:
# Perform text classification using the pipeline
result = nlp_classification(text)
# Return the classification result
return result
except Exception as e:
return JSONResponse(content=f"Error classifying text: {str(e)}", status_code=500)
@app.post("/test_classify/", description="Classify the provided text with positive, neutral, or negative sentiment.")
async def test_classify_text(text: str = Form(...)):
try:
# Perform text classification using the updated model that returns positive, neutral, or negative
result = nlp_classification_v2(text)
# Print the raw label for debugging purposes (can be removed later)
raw_label = result[0]['label']
print(f"Raw label from model: {raw_label}")
# Map the model labels to human-readable format
label_map = {
"negative": "Negative",
"neutral": "Neutral",
"positive": "Positive"
}
# Get the readable label from the map
formatted_label = label_map.get(raw_label, "Unknown")
return {"label": formatted_label, "score": result[0]['score']}
except Exception as e:
return JSONResponse(content=f"Error classifying text: {str(e)}", status_code=500)
@app.post("/transcribe_and_match/", description="Transcribe audio and match responses to form fields.")
async def transcribe_and_match(
file: UploadFile = File(...),
field_data: str = Form(...)
):
try:
# Step 1: Read and convert the audio file
contents = await file.read()
audio = AudioSegment.from_file(BytesIO(contents))
# Optionally convert to wav if needed
wav_io = BytesIO()
audio.export(wav_io, format="wav")
wav_io.seek(0)
# Transcribe the WAV audio file
transcription_result = nlp_speech_to_text(wav_io)
transcription_text = transcription_result['text']
# Step 2: Parse the field_data (which contains field names/IDs)
import json
fields = json.loads(field_data)
# Step 3: Find the matching field for the transcription
field_matches = {}
for field in fields:
field_label = field.get("field_label", "").lower()
field_id = field.get("field_id", "")
# Simple matching: if the transcribed text contains the field label (or something close)
if field_label in transcription_text.lower():
field_matches[field_id] = transcription_text
# Step 4: Return transcription + matched fields
return {
"transcription": transcription_text,
"matched_fields": field_matches
}
except Exception as e:
return JSONResponse(content=f"Error processing audio or matching fields: {str(e)}", status_code=500)
# Set up CORS middleware
origins = ["*"] # or specify your list of allowed origins
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
) |