import fitz from fastapi import FastAPI, File, UploadFile, Form, HTTPException from fastapi.responses import JSONResponse from transformers import pipeline from PIL import Image from io import BytesIO from starlette.middleware import Middleware from starlette.middleware.cors import CORSMiddleware from pdf2image import convert_from_bytes from pydub import AudioSegment import numpy as np import json import torchaudio import torch from pydub import AudioSegment import speech_recognition as sr app = FastAPI() # Set up CORS middleware origins = ["*"] # or specify your list of allowed origins app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) nlp_qa = pipeline("document-question-answering", model="jinhybr/OCR-DocVQA-Donut") nlp_qa_v2 = pipeline("document-question-answering", model="faisalraza/layoutlm-invoices") nlp_qa_v3 = pipeline("question-answering", model="deepset/roberta-base-squad2") nlp_classification = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english") nlp_classification_v2 = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment-latest") nlp_speech_to_text = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") description = """ ## Image-based Document QA This API performs document question answering using a LayoutLMv2-based model. ### Endpoints: - **POST /uploadfile/:** Upload an image file to extract text and answer provided questions. - **POST /pdfQA/:** Provide a PDF file to extract text and answer provided questions. """ app = FastAPI(docs_url="/", description=description) @app.post("/uploadfile/", description="Upload an image file to extract text and answer provided questions.") async def perform_document_qa( file: UploadFile = File(...), questions: str = Form(...), ): try: # Read the uploaded file as bytes contents = await file.read() # Open the image using PIL image = Image.open(BytesIO(contents)) # Perform document question answering for each question using LayoutLMv2-based model answers_dict = {} for question in questions.split(','): result = nlp_qa( image, question.strip() ) # Access the 'answer' key from the first item in the result list answer = result[0]['answer'] # Format the question as a string without extra characters formatted_question = question.strip("[]") answers_dict[formatted_question] = answer return answers_dict except Exception as e: return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500) @app.post("/uploadfilev2/", description="Upload an image file to extract text and answer provided questions.") async def perform_document_qa( file: UploadFile = File(...), questions: str = Form(...), ): try: # Read the uploaded file as bytes contents = await file.read() # Open the image using PIL image = Image.open(BytesIO(contents)) # Perform document question answering for each question using LayoutLMv2-based model answers_dict = {} for question in questions.split(','): result = nlp_qa_v2( image, question.strip() ) # Access the 'answer' key from the first item in the result list answer = result[0]['answer'] # Format the question as a string without extra characters formatted_question = question.strip("[]") answers_dict[formatted_question] = answer return answers_dict except Exception as e: return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500) @app.post("/uploadfilev3/", description="Upload an image file to extract text and answer provided questions.") async def perform_document_qa( context: str = Form(...), question: str = Form(...), ): try: QA_input = { 'question': question, 'context': context } res = nlp_qa_v3(QA_input) return res['answer'] except Exception as e: return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500) @app.post("/classify/", description="Classify the provided text.") async def classify_text(text: str = Form(...)): try: # Perform text classification using the pipeline result = nlp_classification(text) # Return the classification result return result except Exception as e: return JSONResponse(content=f"Error classifying text: {str(e)}", status_code=500) @app.post("/test_classify/", description="Classify the provided text with positive, neutral, or negative sentiment.") async def test_classify_text(text: str = Form(...)): try: # Perform text classification using the updated model that returns positive, neutral, or negative result = nlp_classification_v2(text) # Print the raw label for debugging purposes (can be removed later) raw_label = result[0]['label'] print(f"Raw label from model: {raw_label}") # Map the model labels to human-readable format label_map = { "negative": "Negative", "neutral": "Neutral", "positive": "Positive" } # Get the readable label from the map formatted_label = label_map.get(raw_label, "Unknown") return {"label": formatted_label, "score": result[0]['score']} except Exception as e: return JSONResponse(content=f"Error classifying text: {str(e)}", status_code=500) @app.post("/transcribe_and_answer/", description="Transcribe audio and answer provided questions based on the transcription.") async def transcribe_and_answer( file: UploadFile = File(...), questions: str = Form(...) ): # Check the file format and read it if file.content_type not in ["audio/wav", "audio/mpeg", "audio/mp3"]: raise HTTPException(status_code=400, detail="Unsupported audio format. Please upload a WAV or MP3 file.") # Convert uploaded file to WAV if necessary (for SpeechRecognition compatibility) audio_data = await file.read() audio_file = io.BytesIO(audio_data) try: # Convert MP3 to WAV if needed if file.content_type == "audio/mpeg" or file.content_type == "audio/mp3": audio = AudioSegment.from_mp3(audio_file) audio_wav = io.BytesIO() audio.export(audio_wav, format="wav") audio_wav.seek(0) else: audio_wav = audio_file # Load audio into SpeechRecognition and transcribe recognizer = sr.Recognizer() with sr.AudioFile(audio_wav) as source: audio = recognizer.record(source) transcription_text = recognizer.recognize_google(audio) # Parse the JSON-formatted questions questions_dict = json.loads(questions) # Answer each question based on the transcription text answers_dict = {} for key, question in questions_dict.items(): QA_input = { 'question': question, 'context': transcription_text } result = nlp_qa_v3(QA_input) answers_dict[key] = result['answer'] # Return transcription + answers return { "transcription": transcription_text, "answers": answers_dict } except Exception as e: raise HTTPException(status_code=500, detail=f"Error during transcription or question answering: {str(e)}") # Set up CORS middleware origins = ["*"] # or specify your list of allowed origins app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], )