File size: 6,436 Bytes
7f43c1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# Copyright 2023 Zhejiang University Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class IPNDMScheduler(SchedulerMixin, ConfigMixin):
"""
Improved Pseudo numerical methods for diffusion models (iPNDM) ported from @crowsonkb's amazing k-diffusion
[library](https://github.com/crowsonkb/v-diffusion-pytorch/blob/987f8985e38208345c1959b0ea767a625831cc9b/diffusion/sampling.py#L296)
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions.
For more details, see the original paper: https://arxiv.org/abs/2202.09778
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
"""
order = 1
@register_to_config
def __init__(
self, num_train_timesteps: int = 1000, trained_betas: Optional[Union[np.ndarray, List[float]]] = None
):
# set `betas`, `alphas`, `timesteps`
self.set_timesteps(num_train_timesteps)
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
self.pndm_order = 4
# running values
self.ets = []
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
self.num_inference_steps = num_inference_steps
steps = torch.linspace(1, 0, num_inference_steps + 1)[:-1]
steps = torch.cat([steps, torch.tensor([0.0])])
if self.config.trained_betas is not None:
self.betas = torch.tensor(self.config.trained_betas, dtype=torch.float32)
else:
self.betas = torch.sin(steps * math.pi / 2) ** 2
self.alphas = (1.0 - self.betas**2) ** 0.5
timesteps = (torch.atan2(self.betas, self.alphas) / math.pi * 2)[:-1]
self.timesteps = timesteps.to(device)
self.ets = []
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
times to approximate the solution.
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
Returns:
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
timestep_index = (self.timesteps == timestep).nonzero().item()
prev_timestep_index = timestep_index + 1
ets = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
self.ets.append(ets)
if len(self.ets) == 1:
ets = self.ets[-1]
elif len(self.ets) == 2:
ets = (3 * self.ets[-1] - self.ets[-2]) / 2
elif len(self.ets) == 3:
ets = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
else:
ets = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
prev_sample = self._get_prev_sample(sample, timestep_index, prev_timestep_index, ets)
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`): input sample
Returns:
`torch.FloatTensor`: scaled input sample
"""
return sample
def _get_prev_sample(self, sample, timestep_index, prev_timestep_index, ets):
alpha = self.alphas[timestep_index]
sigma = self.betas[timestep_index]
next_alpha = self.alphas[prev_timestep_index]
next_sigma = self.betas[prev_timestep_index]
pred = (sample - sigma * ets) / max(alpha, 1e-8)
prev_sample = next_alpha * pred + ets * next_sigma
return prev_sample
def __len__(self):
return self.config.num_train_timesteps
|