File size: 26,165 Bytes
7f43c1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
# Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# DISCLAIMER: check https://arxiv.org/abs/2302.04867 and https://github.com/wl-zhao/UniPC for more info
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
def alpha_bar(time_step):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return torch.tensor(betas, dtype=torch.float32)
class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
"""
UniPC is a training-free framework designed for the fast sampling of diffusion models, which consists of a
corrector (UniC) and a predictor (UniP) that share a unified analytical form and support arbitrary orders. UniPC is
by desinged model-agnostic, supporting pixel-space/latent-space DPMs on unconditional/conditional sampling. It can
also be applied to both noise prediction model and data prediction model. The corrector UniC can be also applied
after any off-the-shelf solvers to increase the order of accuracy.
For more details, see the original paper: https://arxiv.org/abs/2302.04867
Currently, we support the multistep UniPC for both noise prediction models and data prediction models. We recommend
to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling.
We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space
diffusion models, you can set both `predict_x0=True` and `thresholding=True` to use the dynamic thresholding. Note
that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion).
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions.
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
beta_start (`float`): the starting `beta` value of inference.
beta_end (`float`): the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
solver_order (`int`, default `2`):
the order of UniPC, also the p in UniPC-p; can be any positive integer. Note that the effective order of
accuracy is `solver_order + 1` due to the UniC. We recommend to use `solver_order=2` for guided sampling,
and `solver_order=3` for unconditional sampling.
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
For pixel-space diffusion models, you can set both `predict_x0=True` and `thresholding=True` to use the
dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models
(such as stable-diffusion).
dynamic_thresholding_ratio (`float`, default `0.995`):
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
(https://arxiv.org/abs/2205.11487).
sample_max_value (`float`, default `1.0`):
the threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`.
predict_x0 (`bool`, default `True`):
whether to use the updating algrithm on the predicted x0. See https://arxiv.org/abs/2211.01095 for details
solver_type (`str`, default `bh2`):
the solver type of UniPC. We recommend use `bh1` for unconditional sampling when steps < 10, and use `bh2`
otherwise.
lower_order_final (`bool`, default `True`):
whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically
find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10.
disable_corrector (`list`, default `[]`):
decide which step to disable the corrector. For large guidance scale, the misalignment between the
`epsilon_theta(x_t, c)`and `epsilon_theta(x_t^c, c)` might influence the convergence. This can be mitigated
by disable the corrector at the first few steps (e.g., disable_corrector=[0])
solver_p (`SchedulerMixin`, default `None`):
can be any other scheduler. If specified, the algorithm will become solver_p + UniC.
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
solver_order: int = 2,
prediction_type: str = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
predict_x0: bool = True,
solver_type: str = "bh2",
lower_order_final: bool = True,
disable_corrector: List[int] = [],
solver_p: SchedulerMixin = None,
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# Currently we only support VP-type noise schedule
self.alpha_t = torch.sqrt(self.alphas_cumprod)
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
if solver_type not in ["bh1", "bh2"]:
if solver_type in ["midpoint", "heun", "logrho"]:
solver_type = "bh1"
else:
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
self.predict_x0 = predict_x0
# setable values
self.num_inference_steps = None
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
self.timesteps = torch.from_numpy(timesteps)
self.model_outputs = [None] * solver_order
self.timestep_list = [None] * solver_order
self.lower_order_nums = 0
self.disable_corrector = disable_corrector
self.solver_p = solver_p
self.last_sample = None
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, optional):
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
timesteps = (
np.linspace(0, self.num_train_timesteps - 1, num_inference_steps + 1)
.round()[::-1][:-1]
.copy()
.astype(np.int64)
)
self.timesteps = torch.from_numpy(timesteps).to(device)
self.model_outputs = [
None,
] * self.config.solver_order
self.lower_order_nums = 0
self.last_sample = None
if self.solver_p:
self.solver_p.set_timesteps(num_inference_steps, device=device)
def convert_model_output(
self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor
) -> torch.FloatTensor:
r"""
Convert the model output to the corresponding type that the algorithm PC needs.
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
Returns:
`torch.FloatTensor`: the converted model output.
"""
if self.predict_x0:
if self.config.prediction_type == "epsilon":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
x0_pred = (sample - sigma_t * model_output) / alpha_t
elif self.config.prediction_type == "sample":
x0_pred = model_output
elif self.config.prediction_type == "v_prediction":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
x0_pred = alpha_t * sample - sigma_t * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the UniPCMultistepScheduler."
)
if self.config.thresholding:
# Dynamic thresholding in https://arxiv.org/abs/2205.11487
orig_dtype = x0_pred.dtype
if orig_dtype not in [torch.float, torch.double]:
x0_pred = x0_pred.float()
dynamic_max_val = torch.quantile(
torch.abs(x0_pred).reshape((x0_pred.shape[0], -1)), self.config.dynamic_thresholding_ratio, dim=1
)
dynamic_max_val = torch.maximum(
dynamic_max_val,
self.config.sample_max_value * torch.ones_like(dynamic_max_val).to(dynamic_max_val.device),
)[(...,) + (None,) * (x0_pred.ndim - 1)]
x0_pred = torch.clamp(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val
x0_pred = x0_pred.type(orig_dtype)
return x0_pred
else:
if self.config.prediction_type == "epsilon":
return model_output
elif self.config.prediction_type == "sample":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
epsilon = (sample - alpha_t * model_output) / sigma_t
return epsilon
elif self.config.prediction_type == "v_prediction":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
epsilon = alpha_t * model_output + sigma_t * sample
return epsilon
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the UniPCMultistepScheduler."
)
def multistep_uni_p_bh_update(
self,
model_output: torch.FloatTensor,
prev_timestep: int,
sample: torch.FloatTensor,
order: int,
) -> torch.FloatTensor:
"""
One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.
Args:
model_output (`torch.FloatTensor`):
direct outputs from learned diffusion model at the current timestep.
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
order (`int`): the order of UniP at this step, also the p in UniPC-p.
Returns:
`torch.FloatTensor`: the sample tensor at the previous timestep.
"""
timestep_list = self.timestep_list
model_output_list = self.model_outputs
s0, t = self.timestep_list[-1], prev_timestep
m0 = model_output_list[-1]
x = sample
if self.solver_p:
x_t = self.solver_p.step(model_output, s0, x).prev_sample
return x_t
lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0]
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
h = lambda_t - lambda_s0
device = sample.device
rks = []
D1s = []
for i in range(1, order):
si = timestep_list[-(i + 1)]
mi = model_output_list[-(i + 1)]
lambda_si = self.lambda_t[si]
rk = (lambda_si - lambda_s0) / h
rks.append(rk)
D1s.append((mi - m0) / rk)
rks.append(1.0)
rks = torch.tensor(rks, device=device)
R = []
b = []
hh = -h if self.predict_x0 else h
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
h_phi_k = h_phi_1 / hh - 1
factorial_i = 1
if self.config.solver_type == "bh1":
B_h = hh
elif self.config.solver_type == "bh2":
B_h = torch.expm1(hh)
else:
raise NotImplementedError()
for i in range(1, order + 1):
R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h)
factorial_i *= i + 1
h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R)
b = torch.tensor(b, device=device)
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1) # (B, K)
# for order 2, we use a simplified version
if order == 2:
rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
else:
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
else:
D1s = None
if self.predict_x0:
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
if D1s is not None:
pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s)
else:
pred_res = 0
x_t = x_t_ - alpha_t * B_h * pred_res
else:
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
if D1s is not None:
pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s)
else:
pred_res = 0
x_t = x_t_ - sigma_t * B_h * pred_res
x_t = x_t.to(x.dtype)
return x_t
def multistep_uni_c_bh_update(
self,
this_model_output: torch.FloatTensor,
this_timestep: int,
last_sample: torch.FloatTensor,
this_sample: torch.FloatTensor,
order: int,
) -> torch.FloatTensor:
"""
One step for the UniC (B(h) version).
Args:
this_model_output (`torch.FloatTensor`): the model outputs at `x_t`
this_timestep (`int`): the current timestep `t`
last_sample (`torch.FloatTensor`): the generated sample before the last predictor: `x_{t-1}`
this_sample (`torch.FloatTensor`): the generated sample after the last predictor: `x_{t}`
order (`int`): the `p` of UniC-p at this step. Note that the effective order of accuracy
should be order + 1
Returns:
`torch.FloatTensor`: the corrected sample tensor at the current timestep.
"""
timestep_list = self.timestep_list
model_output_list = self.model_outputs
s0, t = timestep_list[-1], this_timestep
m0 = model_output_list[-1]
x = last_sample
x_t = this_sample
model_t = this_model_output
lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0]
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
h = lambda_t - lambda_s0
device = this_sample.device
rks = []
D1s = []
for i in range(1, order):
si = timestep_list[-(i + 1)]
mi = model_output_list[-(i + 1)]
lambda_si = self.lambda_t[si]
rk = (lambda_si - lambda_s0) / h
rks.append(rk)
D1s.append((mi - m0) / rk)
rks.append(1.0)
rks = torch.tensor(rks, device=device)
R = []
b = []
hh = -h if self.predict_x0 else h
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
h_phi_k = h_phi_1 / hh - 1
factorial_i = 1
if self.config.solver_type == "bh1":
B_h = hh
elif self.config.solver_type == "bh2":
B_h = torch.expm1(hh)
else:
raise NotImplementedError()
for i in range(1, order + 1):
R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h)
factorial_i *= i + 1
h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R)
b = torch.tensor(b, device=device)
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1)
else:
D1s = None
# for order 1, we use a simplified version
if order == 1:
rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
else:
rhos_c = torch.linalg.solve(R, b)
if self.predict_x0:
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
if D1s is not None:
corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = model_t - m0
x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
else:
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
if D1s is not None:
corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = model_t - m0
x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
x_t = x_t.to(x.dtype)
return x_t
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Step function propagating the sample with the multistep UniPC.
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
Returns:
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
step_index = (self.timesteps == timestep).nonzero()
if len(step_index) == 0:
step_index = len(self.timesteps) - 1
else:
step_index = step_index.item()
use_corrector = (
step_index > 0 and step_index - 1 not in self.disable_corrector and self.last_sample is not None
)
model_output_convert = self.convert_model_output(model_output, timestep, sample)
if use_corrector:
sample = self.multistep_uni_c_bh_update(
this_model_output=model_output_convert,
this_timestep=timestep,
last_sample=self.last_sample,
this_sample=sample,
order=self.this_order,
)
# now prepare to run the predictor
prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1]
for i in range(self.config.solver_order - 1):
self.model_outputs[i] = self.model_outputs[i + 1]
self.timestep_list[i] = self.timestep_list[i + 1]
self.model_outputs[-1] = model_output_convert
self.timestep_list[-1] = timestep
if self.config.lower_order_final:
this_order = min(self.config.solver_order, len(self.timesteps) - step_index)
else:
this_order = self.config.solver_order
self.this_order = min(this_order, self.lower_order_nums + 1) # warmup for multistep
assert self.this_order > 0
self.last_sample = sample
prev_sample = self.multistep_uni_p_bh_update(
model_output=model_output, # pass the original non-converted model output, in case solver-p is used
prev_timestep=prev_timestep,
sample=sample,
order=self.this_order,
)
if self.lower_order_nums < self.config.solver_order:
self.lower_order_nums += 1
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`): input sample
Returns:
`torch.FloatTensor`: scaled input sample
"""
return sample
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps
|