|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin |
|
from diffusers.utils import BaseOutput |
|
|
|
|
|
@dataclass |
|
|
|
class DDIMSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample (x_{0}) based on the model output from the current timestep. |
|
`pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
pred_original_sample: Optional[torch.FloatTensor] = None |
|
|
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor: |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
|
|
def alpha_bar(time_step): |
|
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
class DDIMInverseScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
DDIMInverseScheduler is the reverse scheduler of [`DDIMScheduler`]. |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
For more details, see the original paper: https://arxiv.org/abs/2010.02502 |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
trained_betas (`np.ndarray`, optional): |
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
|
clip_sample (`bool`, default `True`): |
|
option to clip predicted sample between -1 and 1 for numerical stability. |
|
set_alpha_to_one (`bool`, default `True`): |
|
each diffusion step uses the value of alphas product at that step and at the previous one. For the final |
|
step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, |
|
otherwise it uses the value of alpha at step 0. |
|
steps_offset (`int`, default `0`): |
|
an offset added to the inference steps. You can use a combination of `offset=1` and |
|
`set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in |
|
stable diffusion. |
|
prediction_type (`str`, default `epsilon`, optional): |
|
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion |
|
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 |
|
https://imagen.research.google/video/paper.pdf) |
|
""" |
|
|
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
clip_sample: bool = True, |
|
set_alpha_to_one: bool = True, |
|
steps_offset: int = 0, |
|
prediction_type: str = "epsilon", |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = ( |
|
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
) |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
|
|
self.num_inference_steps = None |
|
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps).copy().astype(np.int64)) |
|
|
|
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): input sample |
|
timestep (`int`, optional): current timestep |
|
|
|
Returns: |
|
`torch.FloatTensor`: scaled input sample |
|
""" |
|
return sample |
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
""" |
|
|
|
if num_inference_steps > self.config.num_train_timesteps: |
|
raise ValueError( |
|
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" |
|
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" |
|
f" maximal {self.config.num_train_timesteps} timesteps." |
|
) |
|
|
|
self.num_inference_steps = num_inference_steps |
|
step_ratio = self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
|
|
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round().copy().astype(np.int64) |
|
self.timesteps = torch.from_numpy(timesteps).to(device) |
|
self.timesteps += self.config.steps_offset |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
eta: float = 0.0, |
|
use_clipped_model_output: bool = False, |
|
variance_noise: Optional[torch.FloatTensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[DDIMSchedulerOutput, Tuple]: |
|
e_t = model_output |
|
|
|
x = sample |
|
prev_timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
a_t = self.alphas_cumprod[timestep - 1] |
|
a_prev = self.alphas_cumprod[prev_timestep - 1] if prev_timestep >= 0 else self.final_alpha_cumprod |
|
|
|
pred_x0 = (x - (1 - a_t) ** 0.5 * e_t) / a_t.sqrt() |
|
|
|
dir_xt = (1.0 - a_prev).sqrt() * e_t |
|
|
|
prev_sample = a_prev.sqrt() * pred_x0 + dir_xt |
|
|
|
if not return_dict: |
|
return (prev_sample, pred_x0) |
|
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_x0) |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|