|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput |
|
|
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
|
|
def alpha_bar(time_step): |
|
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
class DEISMultistepScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
DEIS (https://arxiv.org/abs/2204.13902) is a fast high order solver for diffusion ODEs. We slightly modify the |
|
polynomial fitting formula in log-rho space instead of the original linear t space in DEIS paper. The modification |
|
enjoys closed-form coefficients for exponential multistep update instead of replying on the numerical solver. More |
|
variants of DEIS can be found in https://github.com/qsh-zh/deis. |
|
|
|
Currently, we support the log-rho multistep DEIS. We recommend to use `solver_order=2 / 3` while `solver_order=1` |
|
reduces to DDIM. |
|
|
|
We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space |
|
diffusion models, you can set `thresholding=True` to use the dynamic thresholding. |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
trained_betas (`np.ndarray`, optional): |
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
|
solver_order (`int`, default `2`): |
|
the order of DEIS; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided sampling, and |
|
`solver_order=3` for unconditional sampling. |
|
prediction_type (`str`, default `epsilon`): |
|
indicates whether the model predicts the noise (epsilon), or the data / `x0`. One of `epsilon`, `sample`, |
|
or `v-prediction`. |
|
thresholding (`bool`, default `False`): |
|
whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). |
|
Note that the thresholding method is unsuitable for latent-space diffusion models (such as |
|
stable-diffusion). |
|
dynamic_thresholding_ratio (`float`, default `0.995`): |
|
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen |
|
(https://arxiv.org/abs/2205.11487). |
|
sample_max_value (`float`, default `1.0`): |
|
the threshold value for dynamic thresholding. Valid woks when `thresholding=True` |
|
algorithm_type (`str`, default `deis`): |
|
the algorithm type for the solver. current we support multistep deis, we will add other variants of DEIS in |
|
the future |
|
lower_order_final (`bool`, default `True`): |
|
whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically |
|
find this trick can stabilize the sampling of DEIS for steps < 15, especially for steps <= 10. |
|
|
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[np.ndarray] = None, |
|
solver_order: int = 2, |
|
prediction_type: str = "epsilon", |
|
thresholding: bool = False, |
|
dynamic_thresholding_ratio: float = 0.995, |
|
sample_max_value: float = 1.0, |
|
algorithm_type: str = "deis", |
|
solver_type: str = "logrho", |
|
lower_order_final: bool = True, |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = ( |
|
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
) |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
self.alpha_t = torch.sqrt(self.alphas_cumprod) |
|
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) |
|
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
|
|
if algorithm_type not in ["deis"]: |
|
if algorithm_type in ["dpmsolver", "dpmsolver++"]: |
|
algorithm_type = "deis" |
|
else: |
|
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}") |
|
|
|
if solver_type not in ["logrho"]: |
|
if solver_type in ["midpoint", "heun", "bh1", "bh2"]: |
|
solver_type = "logrho" |
|
else: |
|
raise NotImplementedError(f"solver type {solver_type} does is not implemented for {self.__class__}") |
|
|
|
|
|
self.num_inference_steps = None |
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() |
|
self.timesteps = torch.from_numpy(timesteps) |
|
self.model_outputs = [None] * solver_order |
|
self.lower_order_nums = 0 |
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, optional): |
|
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
timesteps = ( |
|
np.linspace(0, self.num_train_timesteps - 1, num_inference_steps + 1) |
|
.round()[::-1][:-1] |
|
.copy() |
|
.astype(np.int64) |
|
) |
|
self.timesteps = torch.from_numpy(timesteps).to(device) |
|
self.model_outputs = [ |
|
None, |
|
] * self.config.solver_order |
|
self.lower_order_nums = 0 |
|
|
|
def convert_model_output( |
|
self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor |
|
) -> torch.FloatTensor: |
|
""" |
|
Convert the model output to the corresponding type that the algorithm DEIS needs. |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: the converted model output. |
|
""" |
|
if self.config.prediction_type == "epsilon": |
|
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] |
|
x0_pred = (sample - sigma_t * model_output) / alpha_t |
|
elif self.config.prediction_type == "sample": |
|
x0_pred = model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] |
|
x0_pred = alpha_t * sample - sigma_t * model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction` for the DEISMultistepScheduler." |
|
) |
|
|
|
if self.config.thresholding: |
|
|
|
orig_dtype = x0_pred.dtype |
|
if orig_dtype not in [torch.float, torch.double]: |
|
x0_pred = x0_pred.float() |
|
dynamic_max_val = torch.quantile( |
|
torch.abs(x0_pred).reshape((x0_pred.shape[0], -1)), self.config.dynamic_thresholding_ratio, dim=1 |
|
) |
|
dynamic_max_val = torch.maximum( |
|
dynamic_max_val, |
|
self.config.sample_max_value * torch.ones_like(dynamic_max_val).to(dynamic_max_val.device), |
|
)[(...,) + (None,) * (x0_pred.ndim - 1)] |
|
x0_pred = torch.clamp(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val |
|
x0_pred = x0_pred.type(orig_dtype) |
|
|
|
if self.config.algorithm_type == "deis": |
|
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] |
|
return (sample - alpha_t * x0_pred) / sigma_t |
|
else: |
|
raise NotImplementedError("only support log-rho multistep deis now") |
|
|
|
def deis_first_order_update( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
prev_timestep: int, |
|
sample: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
""" |
|
One step for the first-order DEIS (equivalent to DDIM). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
prev_timestep (`int`): previous discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: the sample tensor at the previous timestep. |
|
""" |
|
lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep] |
|
alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep] |
|
sigma_t, _ = self.sigma_t[prev_timestep], self.sigma_t[timestep] |
|
h = lambda_t - lambda_s |
|
if self.config.algorithm_type == "deis": |
|
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output |
|
else: |
|
raise NotImplementedError("only support log-rho multistep deis now") |
|
return x_t |
|
|
|
def multistep_deis_second_order_update( |
|
self, |
|
model_output_list: List[torch.FloatTensor], |
|
timestep_list: List[int], |
|
prev_timestep: int, |
|
sample: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
""" |
|
One step for the second-order multistep DEIS. |
|
|
|
Args: |
|
model_output_list (`List[torch.FloatTensor]`): |
|
direct outputs from learned diffusion model at current and latter timesteps. |
|
timestep (`int`): current and latter discrete timestep in the diffusion chain. |
|
prev_timestep (`int`): previous discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: the sample tensor at the previous timestep. |
|
""" |
|
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] |
|
m0, m1 = model_output_list[-1], model_output_list[-2] |
|
alpha_t, alpha_s0, alpha_s1 = self.alpha_t[t], self.alpha_t[s0], self.alpha_t[s1] |
|
sigma_t, sigma_s0, sigma_s1 = self.sigma_t[t], self.sigma_t[s0], self.sigma_t[s1] |
|
|
|
rho_t, rho_s0, rho_s1 = sigma_t / alpha_t, sigma_s0 / alpha_s0, sigma_s1 / alpha_s1 |
|
|
|
if self.config.algorithm_type == "deis": |
|
|
|
def ind_fn(t, b, c): |
|
|
|
return t * (-np.log(c) + np.log(t) - 1) / (np.log(b) - np.log(c)) |
|
|
|
coef1 = ind_fn(rho_t, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s0, rho_s1) |
|
coef2 = ind_fn(rho_t, rho_s1, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s0) |
|
|
|
x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1) |
|
return x_t |
|
else: |
|
raise NotImplementedError("only support log-rho multistep deis now") |
|
|
|
def multistep_deis_third_order_update( |
|
self, |
|
model_output_list: List[torch.FloatTensor], |
|
timestep_list: List[int], |
|
prev_timestep: int, |
|
sample: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
""" |
|
One step for the third-order multistep DEIS. |
|
|
|
Args: |
|
model_output_list (`List[torch.FloatTensor]`): |
|
direct outputs from learned diffusion model at current and latter timesteps. |
|
timestep (`int`): current and latter discrete timestep in the diffusion chain. |
|
prev_timestep (`int`): previous discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: the sample tensor at the previous timestep. |
|
""" |
|
t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3] |
|
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] |
|
alpha_t, alpha_s0, alpha_s1, alpha_s2 = self.alpha_t[t], self.alpha_t[s0], self.alpha_t[s1], self.alpha_t[s2] |
|
sigma_t, sigma_s0, sigma_s1, simga_s2 = self.sigma_t[t], self.sigma_t[s0], self.sigma_t[s1], self.sigma_t[s2] |
|
rho_t, rho_s0, rho_s1, rho_s2 = ( |
|
sigma_t / alpha_t, |
|
sigma_s0 / alpha_s0, |
|
sigma_s1 / alpha_s1, |
|
simga_s2 / alpha_s2, |
|
) |
|
|
|
if self.config.algorithm_type == "deis": |
|
|
|
def ind_fn(t, b, c, d): |
|
|
|
numerator = t * ( |
|
np.log(c) * (np.log(d) - np.log(t) + 1) |
|
- np.log(d) * np.log(t) |
|
+ np.log(d) |
|
+ np.log(t) ** 2 |
|
- 2 * np.log(t) |
|
+ 2 |
|
) |
|
denominator = (np.log(b) - np.log(c)) * (np.log(b) - np.log(d)) |
|
return numerator / denominator |
|
|
|
coef1 = ind_fn(rho_t, rho_s0, rho_s1, rho_s2) - ind_fn(rho_s0, rho_s0, rho_s1, rho_s2) |
|
coef2 = ind_fn(rho_t, rho_s1, rho_s2, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s2, rho_s0) |
|
coef3 = ind_fn(rho_t, rho_s2, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s2, rho_s0, rho_s1) |
|
|
|
x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1 + coef3 * m2) |
|
|
|
return x_t |
|
else: |
|
raise NotImplementedError("only support log-rho multistep deis now") |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Step function propagating the sample with the multistep DEIS. |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class |
|
|
|
Returns: |
|
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is |
|
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
step_index = (self.timesteps == timestep).nonzero() |
|
if len(step_index) == 0: |
|
step_index = len(self.timesteps) - 1 |
|
else: |
|
step_index = step_index.item() |
|
prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1] |
|
lower_order_final = ( |
|
(step_index == len(self.timesteps) - 1) and self.config.lower_order_final and len(self.timesteps) < 15 |
|
) |
|
lower_order_second = ( |
|
(step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15 |
|
) |
|
|
|
model_output = self.convert_model_output(model_output, timestep, sample) |
|
for i in range(self.config.solver_order - 1): |
|
self.model_outputs[i] = self.model_outputs[i + 1] |
|
self.model_outputs[-1] = model_output |
|
|
|
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: |
|
prev_sample = self.deis_first_order_update(model_output, timestep, prev_timestep, sample) |
|
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: |
|
timestep_list = [self.timesteps[step_index - 1], timestep] |
|
prev_sample = self.multistep_deis_second_order_update( |
|
self.model_outputs, timestep_list, prev_timestep, sample |
|
) |
|
else: |
|
timestep_list = [self.timesteps[step_index - 2], self.timesteps[step_index - 1], timestep] |
|
prev_sample = self.multistep_deis_third_order_update( |
|
self.model_outputs, timestep_list, prev_timestep, sample |
|
) |
|
|
|
if self.lower_order_nums < self.config.solver_order: |
|
self.lower_order_nums += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): input sample |
|
|
|
Returns: |
|
`torch.FloatTensor`: scaled input sample |
|
""" |
|
return sample |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.FloatTensor: |
|
|
|
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|