|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput, logging, randn_tensor |
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
|
|
class EulerDiscreteSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample (x_{0}) based on the model output from the current timestep. |
|
`pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
pred_original_sample: Optional[torch.FloatTensor] = None |
|
|
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
|
|
def alpha_bar(time_step): |
|
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Euler scheduler (Algorithm 2) from Karras et al. (2022) https://arxiv.org/abs/2206.00364. . Based on the original |
|
k-diffusion implementation by Katherine Crowson: |
|
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L51 |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear` or `scaled_linear`. |
|
trained_betas (`np.ndarray`, optional): |
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
|
prediction_type (`str`, default `"epsilon"`, optional): |
|
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion |
|
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 |
|
https://imagen.research.google/video/paper.pdf) |
|
interpolation_type (`str`, default `"linear"`, optional): |
|
interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be one of |
|
[`"linear"`, `"log_linear"`]. |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
prediction_type: str = "epsilon", |
|
interpolation_type: str = "linear", |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = ( |
|
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
) |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) |
|
self.sigmas = torch.from_numpy(sigmas) |
|
|
|
|
|
self.init_noise_sigma = self.sigmas.max() |
|
|
|
|
|
self.num_inference_steps = None |
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() |
|
self.timesteps = torch.from_numpy(timesteps) |
|
self.is_scale_input_called = False |
|
|
|
def scale_model_input( |
|
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] |
|
) -> torch.FloatTensor: |
|
""" |
|
Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): input sample |
|
timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain |
|
|
|
Returns: |
|
`torch.FloatTensor`: scaled input sample |
|
""" |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
step_index = (self.timesteps == timestep).nonzero().item() |
|
sigma = self.sigmas[step_index] |
|
|
|
sample = sample / ((sigma**2 + 1) ** 0.5) |
|
|
|
self.is_scale_input_called = True |
|
return sample |
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, optional): |
|
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
|
|
timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() |
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
|
|
if self.config.interpolation_type == "linear": |
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) |
|
elif self.config.interpolation_type == "log_linear": |
|
sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp() |
|
else: |
|
raise ValueError( |
|
f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either" |
|
" 'linear' or 'log_linear'" |
|
) |
|
|
|
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) |
|
self.sigmas = torch.from_numpy(sigmas).to(device=device) |
|
if str(device).startswith("mps"): |
|
|
|
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32) |
|
else: |
|
self.timesteps = torch.from_numpy(timesteps).to(device=device) |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
s_churn: float = 0.0, |
|
s_tmin: float = 0.0, |
|
s_tmax: float = float("inf"), |
|
s_noise: float = 1.0, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[EulerDiscreteSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
timestep (`float`): current timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
s_churn (`float`) |
|
s_tmin (`float`) |
|
s_tmax (`float`) |
|
s_noise (`float`) |
|
generator (`torch.Generator`, optional): Random number generator. |
|
return_dict (`bool`): option for returning tuple rather than EulerDiscreteSchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] or `tuple`: |
|
[`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
|
|
if ( |
|
isinstance(timestep, int) |
|
or isinstance(timestep, torch.IntTensor) |
|
or isinstance(timestep, torch.LongTensor) |
|
): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if not self.is_scale_input_called: |
|
logger.warning( |
|
"The `scale_model_input` function should be called before `step` to ensure correct denoising. " |
|
"See `StableDiffusionPipeline` for a usage example." |
|
) |
|
|
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
|
|
step_index = (self.timesteps == timestep).nonzero().item() |
|
sigma = self.sigmas[step_index] |
|
|
|
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 |
|
|
|
noise = randn_tensor( |
|
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator |
|
) |
|
|
|
eps = noise * s_noise |
|
sigma_hat = sigma * (gamma + 1) |
|
|
|
if gamma > 0: |
|
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 |
|
|
|
|
|
|
|
|
|
if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
elif self.config.prediction_type == "epsilon": |
|
pred_original_sample = sample - sigma_hat * model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
|
|
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" |
|
) |
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma_hat |
|
|
|
dt = self.sigmas[step_index + 1] - sigma_hat |
|
|
|
prev_sample = sample + derivative * dt |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
|
|
self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) |
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): |
|
|
|
self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) |
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) |
|
else: |
|
self.timesteps = self.timesteps.to(original_samples.device) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
schedule_timesteps = self.timesteps |
|
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] |
|
|
|
sigma = self.sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(original_samples.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
noisy_samples = original_samples + noise * sigma |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|