|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import randn_tensor |
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput |
|
|
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor: |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
|
|
def alpha_bar(time_step): |
|
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Scheduler created by @crowsonkb in [k_diffusion](https://github.com/crowsonkb/k-diffusion), see: |
|
https://github.com/crowsonkb/k-diffusion/blob/5b3af030dd83e0297272d861c19477735d0317ec/k_diffusion/sampling.py#L188 |
|
|
|
Scheduler inspired by DPM-Solver-2 and Algorthim 2 from Karras et al. (2022). |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the |
|
starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear` or `scaled_linear`. |
|
trained_betas (`np.ndarray`, optional): |
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
|
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, |
|
`fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. |
|
prediction_type (`str`, default `epsilon`, optional): |
|
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion |
|
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 |
|
https://imagen.research.google/video/paper.pdf) |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 2 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.00085, |
|
beta_end: float = 0.012, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
prediction_type: str = "epsilon", |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = ( |
|
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
) |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
|
|
self.set_timesteps(num_train_timesteps, None, num_train_timesteps) |
|
|
|
def index_for_timestep(self, timestep): |
|
indices = (self.timesteps == timestep).nonzero() |
|
if self.state_in_first_order: |
|
pos = -1 |
|
else: |
|
pos = 0 |
|
return indices[pos].item() |
|
|
|
def scale_model_input( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
) -> torch.FloatTensor: |
|
""" |
|
Args: |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
sample (`torch.FloatTensor`): input sample timestep (`int`, optional): current timestep |
|
Returns: |
|
`torch.FloatTensor`: scaled input sample |
|
""" |
|
step_index = self.index_for_timestep(timestep) |
|
|
|
if self.state_in_first_order: |
|
sigma = self.sigmas[step_index] |
|
else: |
|
sigma = self.sigmas_interpol[step_index - 1] |
|
|
|
sample = sample / ((sigma**2 + 1) ** 0.5) |
|
return sample |
|
|
|
def set_timesteps( |
|
self, |
|
num_inference_steps: int, |
|
device: Union[str, torch.device] = None, |
|
num_train_timesteps: Optional[int] = None, |
|
): |
|
""" |
|
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, optional): |
|
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
|
|
num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps |
|
|
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() |
|
|
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
self.log_sigmas = torch.from_numpy(np.log(sigmas)).to(device) |
|
|
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) |
|
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) |
|
sigmas = torch.from_numpy(sigmas).to(device=device) |
|
|
|
|
|
sigmas_next = sigmas.roll(-1) |
|
sigmas_next[-1] = 0.0 |
|
sigmas_up = (sigmas_next**2 * (sigmas**2 - sigmas_next**2) / sigmas**2) ** 0.5 |
|
sigmas_down = (sigmas_next**2 - sigmas_up**2) ** 0.5 |
|
sigmas_down[-1] = 0.0 |
|
|
|
|
|
sigmas_interpol = sigmas.log().lerp(sigmas_down.log(), 0.5).exp() |
|
sigmas_interpol[-2:] = 0.0 |
|
|
|
|
|
self.sigmas = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) |
|
self.sigmas_interpol = torch.cat( |
|
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]] |
|
) |
|
self.sigmas_up = torch.cat([sigmas_up[:1], sigmas_up[1:].repeat_interleave(2), sigmas_up[-1:]]) |
|
self.sigmas_down = torch.cat([sigmas_down[:1], sigmas_down[1:].repeat_interleave(2), sigmas_down[-1:]]) |
|
|
|
|
|
self.init_noise_sigma = self.sigmas.max() |
|
|
|
if str(device).startswith("mps"): |
|
|
|
timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32) |
|
else: |
|
timesteps = torch.from_numpy(timesteps).to(device) |
|
|
|
timesteps_interpol = self.sigma_to_t(sigmas_interpol).to(device) |
|
interleaved_timesteps = torch.stack((timesteps_interpol[:-2, None], timesteps[1:, None]), dim=-1).flatten() |
|
|
|
self.timesteps = torch.cat([timesteps[:1], interleaved_timesteps]) |
|
|
|
self.sample = None |
|
|
|
def sigma_to_t(self, sigma): |
|
|
|
log_sigma = sigma.log() |
|
|
|
|
|
dists = log_sigma - self.log_sigmas[:, None] |
|
|
|
|
|
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) |
|
high_idx = low_idx + 1 |
|
|
|
low = self.log_sigmas[low_idx] |
|
high = self.log_sigmas[high_idx] |
|
|
|
|
|
w = (low - log_sigma) / (low - high) |
|
w = w.clamp(0, 1) |
|
|
|
|
|
t = (1 - w) * low_idx + w * high_idx |
|
t = t.view(sigma.shape) |
|
return t |
|
|
|
@property |
|
def state_in_first_order(self): |
|
return self.sample is None |
|
|
|
def step( |
|
self, |
|
model_output: Union[torch.FloatTensor, np.ndarray], |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: Union[torch.FloatTensor, np.ndarray], |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Args: |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. timestep |
|
(`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor` or `np.ndarray`): |
|
current instance of sample being created by diffusion process. |
|
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class |
|
Returns: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
""" |
|
step_index = self.index_for_timestep(timestep) |
|
|
|
if self.state_in_first_order: |
|
sigma = self.sigmas[step_index] |
|
sigma_interpol = self.sigmas_interpol[step_index] |
|
sigma_up = self.sigmas_up[step_index] |
|
sigma_down = self.sigmas_down[step_index - 1] |
|
else: |
|
|
|
sigma = self.sigmas[step_index - 1] |
|
sigma_interpol = self.sigmas_interpol[step_index - 1] |
|
sigma_up = self.sigmas_up[step_index - 1] |
|
sigma_down = self.sigmas_down[step_index - 1] |
|
|
|
|
|
|
|
|
|
gamma = 0 |
|
sigma_hat = sigma * (gamma + 1) |
|
|
|
device = model_output.device |
|
noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator) |
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol |
|
pred_original_sample = sample - sigma_input * model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol |
|
pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( |
|
sample / (sigma_input**2 + 1) |
|
) |
|
elif self.config.prediction_type == "sample": |
|
raise NotImplementedError("prediction_type not implemented yet: sample") |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" |
|
) |
|
|
|
if self.state_in_first_order: |
|
|
|
derivative = (sample - pred_original_sample) / sigma_hat |
|
|
|
dt = sigma_interpol - sigma_hat |
|
|
|
|
|
self.sample = sample |
|
self.dt = dt |
|
prev_sample = sample + derivative * dt |
|
else: |
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma_interpol |
|
|
|
dt = sigma_down - sigma_hat |
|
|
|
sample = self.sample |
|
self.sample = None |
|
|
|
prev_sample = sample + derivative * dt |
|
prev_sample = prev_sample + noise * sigma_up |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
|
|
self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) |
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): |
|
|
|
self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) |
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) |
|
else: |
|
self.timesteps = self.timesteps.to(original_samples.device) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
step_indices = [self.index_for_timestep(t) for t in timesteps] |
|
|
|
sigma = self.sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(original_samples.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
noisy_samples = original_samples + noise * sigma |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|