ML-Image / diffusers /schedulers /scheduling_k_dpm_2_ancestral_discrete.py
ML-INTA's picture
Upload 358 files
7f43c1b
# Copyright 2023 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
def alpha_bar(time_step):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return torch.tensor(betas, dtype=torch.float32)
class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
Scheduler created by @crowsonkb in [k_diffusion](https://github.com/crowsonkb/k-diffusion), see:
https://github.com/crowsonkb/k-diffusion/blob/5b3af030dd83e0297272d861c19477735d0317ec/k_diffusion/sampling.py#L188
Scheduler inspired by DPM-Solver-2 and Algorthim 2 from Karras et al. (2022).
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions.
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the
starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
`fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 2
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.00085, # sensible defaults
beta_end: float = 0.012,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: str = "epsilon",
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# set all values
self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
def index_for_timestep(self, timestep):
indices = (self.timesteps == timestep).nonzero()
if self.state_in_first_order:
pos = -1
else:
pos = 0
return indices[pos].item()
def scale_model_input(
self,
sample: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
) -> torch.FloatTensor:
"""
Args:
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
sample (`torch.FloatTensor`): input sample timestep (`int`, optional): current timestep
Returns:
`torch.FloatTensor`: scaled input sample
"""
step_index = self.index_for_timestep(timestep)
if self.state_in_first_order:
sigma = self.sigmas[step_index]
else:
sigma = self.sigmas_interpol[step_index - 1]
sample = sample / ((sigma**2 + 1) ** 0.5)
return sample
def set_timesteps(
self,
num_inference_steps: int,
device: Union[str, torch.device] = None,
num_train_timesteps: Optional[int] = None,
):
"""
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, optional):
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps
timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
self.log_sigmas = torch.from_numpy(np.log(sigmas)).to(device)
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
sigmas = torch.from_numpy(sigmas).to(device=device)
# compute up and down sigmas
sigmas_next = sigmas.roll(-1)
sigmas_next[-1] = 0.0
sigmas_up = (sigmas_next**2 * (sigmas**2 - sigmas_next**2) / sigmas**2) ** 0.5
sigmas_down = (sigmas_next**2 - sigmas_up**2) ** 0.5
sigmas_down[-1] = 0.0
# compute interpolated sigmas
sigmas_interpol = sigmas.log().lerp(sigmas_down.log(), 0.5).exp()
sigmas_interpol[-2:] = 0.0
# set sigmas
self.sigmas = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]])
self.sigmas_interpol = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]
)
self.sigmas_up = torch.cat([sigmas_up[:1], sigmas_up[1:].repeat_interleave(2), sigmas_up[-1:]])
self.sigmas_down = torch.cat([sigmas_down[:1], sigmas_down[1:].repeat_interleave(2), sigmas_down[-1:]])
# standard deviation of the initial noise distribution
self.init_noise_sigma = self.sigmas.max()
if str(device).startswith("mps"):
# mps does not support float64
timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
else:
timesteps = torch.from_numpy(timesteps).to(device)
timesteps_interpol = self.sigma_to_t(sigmas_interpol).to(device)
interleaved_timesteps = torch.stack((timesteps_interpol[:-2, None], timesteps[1:, None]), dim=-1).flatten()
self.timesteps = torch.cat([timesteps[:1], interleaved_timesteps])
self.sample = None
def sigma_to_t(self, sigma):
# get log sigma
log_sigma = sigma.log()
# get distribution
dists = log_sigma - self.log_sigmas[:, None]
# get sigmas range
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = self.log_sigmas[low_idx]
high = self.log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = w.clamp(0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.view(sigma.shape)
return t
@property
def state_in_first_order(self):
return self.sample is None
def step(
self,
model_output: Union[torch.FloatTensor, np.ndarray],
timestep: Union[float, torch.FloatTensor],
sample: Union[torch.FloatTensor, np.ndarray],
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Args:
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. timestep
(`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor` or `np.ndarray`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
step_index = self.index_for_timestep(timestep)
if self.state_in_first_order:
sigma = self.sigmas[step_index]
sigma_interpol = self.sigmas_interpol[step_index]
sigma_up = self.sigmas_up[step_index]
sigma_down = self.sigmas_down[step_index - 1]
else:
# 2nd order / KPDM2's method
sigma = self.sigmas[step_index - 1]
sigma_interpol = self.sigmas_interpol[step_index - 1]
sigma_up = self.sigmas_up[step_index - 1]
sigma_down = self.sigmas_down[step_index - 1]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
gamma = 0
sigma_hat = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
device = model_output.device
noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol
pred_original_sample = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol
pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError("prediction_type not implemented yet: sample")
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
)
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
derivative = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
dt = sigma_interpol - sigma_hat
# store for 2nd order step
self.sample = sample
self.dt = dt
prev_sample = sample + derivative * dt
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
derivative = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
dt = sigma_down - sigma_hat
sample = self.sample
self.sample = None
prev_sample = sample + derivative * dt
prev_sample = prev_sample + noise * sigma_up
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.FloatTensor,
) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
self.timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
step_indices = [self.index_for_timestep(t) for t in timesteps]
sigma = self.sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps