|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput, randn_tensor |
|
from .scheduling_utils import SchedulerMixin |
|
|
|
|
|
@dataclass |
|
class RePaintSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample (x_{0}) based on the model output from |
|
the current timestep. `pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
pred_original_sample: torch.FloatTensor |
|
|
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
|
|
def alpha_bar(time_step): |
|
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
class RePaintScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
RePaint is a schedule for DDPM inpainting inside a given mask. |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
For more details, see the original paper: https://arxiv.org/pdf/2201.09865.pdf |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
eta (`float`): |
|
The weight of noise for added noise in a diffusion step. Its value is between 0.0 and 1.0 -0.0 is DDIM and |
|
1.0 is DDPM scheduler respectively. |
|
trained_betas (`np.ndarray`, optional): |
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
|
variance_type (`str`): |
|
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, |
|
`fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. |
|
clip_sample (`bool`, default `True`): |
|
option to clip predicted sample between -1 and 1 for numerical stability. |
|
|
|
""" |
|
|
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
eta: float = 0.0, |
|
trained_betas: Optional[np.ndarray] = None, |
|
clip_sample: bool = True, |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.from_numpy(trained_betas) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = ( |
|
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
) |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
elif beta_schedule == "sigmoid": |
|
|
|
betas = torch.linspace(-6, 6, num_train_timesteps) |
|
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
self.one = torch.tensor(1.0) |
|
|
|
self.final_alpha_cumprod = torch.tensor(1.0) |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
|
|
self.num_inference_steps = None |
|
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) |
|
|
|
self.eta = eta |
|
|
|
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): input sample |
|
timestep (`int`, optional): current timestep |
|
|
|
Returns: |
|
`torch.FloatTensor`: scaled input sample |
|
""" |
|
return sample |
|
|
|
def set_timesteps( |
|
self, |
|
num_inference_steps: int, |
|
jump_length: int = 10, |
|
jump_n_sample: int = 10, |
|
device: Union[str, torch.device] = None, |
|
): |
|
num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps) |
|
self.num_inference_steps = num_inference_steps |
|
|
|
timesteps = [] |
|
|
|
jumps = {} |
|
for j in range(0, num_inference_steps - jump_length, jump_length): |
|
jumps[j] = jump_n_sample - 1 |
|
|
|
t = num_inference_steps |
|
while t >= 1: |
|
t = t - 1 |
|
timesteps.append(t) |
|
|
|
if jumps.get(t, 0) > 0: |
|
jumps[t] = jumps[t] - 1 |
|
for _ in range(jump_length): |
|
t = t + 1 |
|
timesteps.append(t) |
|
|
|
timesteps = np.array(timesteps) * (self.config.num_train_timesteps // self.num_inference_steps) |
|
self.timesteps = torch.from_numpy(timesteps).to(device) |
|
|
|
def _get_variance(self, t): |
|
prev_timestep = t - self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
alpha_prod_t = self.alphas_cumprod[t] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) |
|
|
|
return variance |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
original_image: torch.FloatTensor, |
|
mask: torch.FloatTensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[RePaintSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned |
|
diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
original_image (`torch.FloatTensor`): |
|
the original image to inpaint on. |
|
mask (`torch.FloatTensor`): |
|
the mask where 0.0 values define which part of the original image to inpaint (change). |
|
generator (`torch.Generator`, *optional*): random number generator. |
|
return_dict (`bool`): option for returning tuple rather than |
|
DDPMSchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.RePaintSchedulerOutput`] or `tuple`: |
|
[`~schedulers.scheduling_utils.RePaintSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
t = timestep |
|
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
|
|
alpha_prod_t = self.alphas_cumprod[t] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod |
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
|
|
pred_original_sample = (sample - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5 |
|
|
|
|
|
if self.config.clip_sample: |
|
pred_original_sample = torch.clamp(pred_original_sample, -1, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
device = model_output.device |
|
noise = randn_tensor(model_output.shape, generator=generator, device=device, dtype=model_output.dtype) |
|
std_dev_t = self.eta * self._get_variance(timestep) ** 0.5 |
|
|
|
variance = 0 |
|
if t > 0 and self.eta > 0: |
|
variance = std_dev_t * noise |
|
|
|
|
|
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output |
|
|
|
|
|
prev_unknown_part = alpha_prod_t_prev**0.5 * pred_original_sample + pred_sample_direction + variance |
|
|
|
|
|
prev_known_part = (alpha_prod_t_prev**0.5) * original_image + ((1 - alpha_prod_t_prev) ** 0.5) * noise |
|
|
|
|
|
pred_prev_sample = mask * prev_known_part + (1.0 - mask) * prev_unknown_part |
|
|
|
if not return_dict: |
|
return ( |
|
pred_prev_sample, |
|
pred_original_sample, |
|
) |
|
|
|
return RePaintSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) |
|
|
|
def undo_step(self, sample, timestep, generator=None): |
|
n = self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
for i in range(n): |
|
beta = self.betas[timestep + i] |
|
if sample.device.type == "mps": |
|
|
|
noise = randn_tensor(sample.shape, dtype=sample.dtype, generator=generator) |
|
noise = noise.to(sample.device) |
|
else: |
|
noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype) |
|
|
|
|
|
sample = (1 - beta) ** 0.5 * sample + beta**0.5 * noise |
|
|
|
return sample |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.FloatTensor: |
|
raise NotImplementedError("Use `DDPMScheduler.add_noise()` to train for sampling with RePaint.") |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|