|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import flax |
|
import jax.numpy as jnp |
|
from jax import random |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from .scheduling_utils_flax import FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left |
|
|
|
|
|
@flax.struct.dataclass |
|
class ScoreSdeVeSchedulerState: |
|
|
|
timesteps: Optional[jnp.ndarray] = None |
|
discrete_sigmas: Optional[jnp.ndarray] = None |
|
sigmas: Optional[jnp.ndarray] = None |
|
|
|
@classmethod |
|
def create(cls): |
|
return cls() |
|
|
|
|
|
@dataclass |
|
class FlaxSdeVeOutput(FlaxSchedulerOutput): |
|
""" |
|
Output class for the ScoreSdeVeScheduler's step function output. |
|
|
|
Args: |
|
state (`ScoreSdeVeSchedulerState`): |
|
prev_sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
prev_sample_mean (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): |
|
Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps. |
|
""" |
|
|
|
state: ScoreSdeVeSchedulerState |
|
prev_sample: jnp.ndarray |
|
prev_sample_mean: Optional[jnp.ndarray] = None |
|
|
|
|
|
class FlaxScoreSdeVeScheduler(FlaxSchedulerMixin, ConfigMixin): |
|
""" |
|
The variance exploding stochastic differential equation (SDE) scheduler. |
|
|
|
For more information, see the original paper: https://arxiv.org/abs/2011.13456 |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
snr (`float`): |
|
coefficient weighting the step from the model_output sample (from the network) to the random noise. |
|
sigma_min (`float`): |
|
initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the |
|
distribution of the data. |
|
sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model. |
|
sampling_eps (`float`): the end value of sampling, where timesteps decrease progressively from 1 to |
|
epsilon. |
|
correct_steps (`int`): number of correction steps performed on a produced sample. |
|
""" |
|
|
|
@property |
|
def has_state(self): |
|
return True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 2000, |
|
snr: float = 0.15, |
|
sigma_min: float = 0.01, |
|
sigma_max: float = 1348.0, |
|
sampling_eps: float = 1e-5, |
|
correct_steps: int = 1, |
|
): |
|
pass |
|
|
|
def create_state(self): |
|
state = ScoreSdeVeSchedulerState.create() |
|
return self.set_sigmas( |
|
state, |
|
self.config.num_train_timesteps, |
|
self.config.sigma_min, |
|
self.config.sigma_max, |
|
self.config.sampling_eps, |
|
) |
|
|
|
def set_timesteps( |
|
self, state: ScoreSdeVeSchedulerState, num_inference_steps: int, shape: Tuple = (), sampling_eps: float = None |
|
) -> ScoreSdeVeSchedulerState: |
|
""" |
|
Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
state (`ScoreSdeVeSchedulerState`): the `FlaxScoreSdeVeScheduler` state data class instance. |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation). |
|
|
|
""" |
|
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps |
|
|
|
timesteps = jnp.linspace(1, sampling_eps, num_inference_steps) |
|
return state.replace(timesteps=timesteps) |
|
|
|
def set_sigmas( |
|
self, |
|
state: ScoreSdeVeSchedulerState, |
|
num_inference_steps: int, |
|
sigma_min: float = None, |
|
sigma_max: float = None, |
|
sampling_eps: float = None, |
|
) -> ScoreSdeVeSchedulerState: |
|
""" |
|
Sets the noise scales used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
The sigmas control the weight of the `drift` and `diffusion` components of sample update. |
|
|
|
Args: |
|
state (`ScoreSdeVeSchedulerState`): the `FlaxScoreSdeVeScheduler` state data class instance. |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
sigma_min (`float`, optional): |
|
initial noise scale value (overrides value given at Scheduler instantiation). |
|
sigma_max (`float`, optional): final noise scale value (overrides value given at Scheduler instantiation). |
|
sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation). |
|
""" |
|
sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min |
|
sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max |
|
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps |
|
if state.timesteps is None: |
|
state = self.set_timesteps(state, num_inference_steps, sampling_eps) |
|
|
|
discrete_sigmas = jnp.exp(jnp.linspace(jnp.log(sigma_min), jnp.log(sigma_max), num_inference_steps)) |
|
sigmas = jnp.array([sigma_min * (sigma_max / sigma_min) ** t for t in state.timesteps]) |
|
|
|
return state.replace(discrete_sigmas=discrete_sigmas, sigmas=sigmas) |
|
|
|
def get_adjacent_sigma(self, state, timesteps, t): |
|
return jnp.where(timesteps == 0, jnp.zeros_like(t), state.discrete_sigmas[timesteps - 1]) |
|
|
|
def step_pred( |
|
self, |
|
state: ScoreSdeVeSchedulerState, |
|
model_output: jnp.ndarray, |
|
timestep: int, |
|
sample: jnp.ndarray, |
|
key: random.KeyArray, |
|
return_dict: bool = True, |
|
) -> Union[FlaxSdeVeOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
state (`ScoreSdeVeSchedulerState`): the `FlaxScoreSdeVeScheduler` state data class instance. |
|
model_output (`jnp.ndarray`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`jnp.ndarray`): |
|
current instance of sample being created by diffusion process. |
|
generator: random number generator. |
|
return_dict (`bool`): option for returning tuple rather than FlaxSdeVeOutput class |
|
|
|
Returns: |
|
[`FlaxSdeVeOutput`] or `tuple`: [`FlaxSdeVeOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
if state.timesteps is None: |
|
raise ValueError( |
|
"`state.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
timestep = timestep * jnp.ones( |
|
sample.shape[0], |
|
) |
|
timesteps = (timestep * (len(state.timesteps) - 1)).long() |
|
|
|
sigma = state.discrete_sigmas[timesteps] |
|
adjacent_sigma = self.get_adjacent_sigma(state, timesteps, timestep) |
|
drift = jnp.zeros_like(sample) |
|
diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5 |
|
|
|
|
|
|
|
diffusion = diffusion.flatten() |
|
diffusion = broadcast_to_shape_from_left(diffusion, sample.shape) |
|
drift = drift - diffusion**2 * model_output |
|
|
|
|
|
key = random.split(key, num=1) |
|
noise = random.normal(key=key, shape=sample.shape) |
|
prev_sample_mean = sample - drift |
|
|
|
prev_sample = prev_sample_mean + diffusion * noise |
|
|
|
if not return_dict: |
|
return (prev_sample, prev_sample_mean, state) |
|
|
|
return FlaxSdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean, state=state) |
|
|
|
def step_correct( |
|
self, |
|
state: ScoreSdeVeSchedulerState, |
|
model_output: jnp.ndarray, |
|
sample: jnp.ndarray, |
|
key: random.KeyArray, |
|
return_dict: bool = True, |
|
) -> Union[FlaxSdeVeOutput, Tuple]: |
|
""" |
|
Correct the predicted sample based on the output model_output of the network. This is often run repeatedly |
|
after making the prediction for the previous timestep. |
|
|
|
Args: |
|
state (`ScoreSdeVeSchedulerState`): the `FlaxScoreSdeVeScheduler` state data class instance. |
|
model_output (`jnp.ndarray`): direct output from learned diffusion model. |
|
sample (`jnp.ndarray`): |
|
current instance of sample being created by diffusion process. |
|
generator: random number generator. |
|
return_dict (`bool`): option for returning tuple rather than FlaxSdeVeOutput class |
|
|
|
Returns: |
|
[`FlaxSdeVeOutput`] or `tuple`: [`FlaxSdeVeOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
if state.timesteps is None: |
|
raise ValueError( |
|
"`state.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
|
|
|
|
key = random.split(key, num=1) |
|
noise = random.normal(key=key, shape=sample.shape) |
|
|
|
|
|
grad_norm = jnp.linalg.norm(model_output) |
|
noise_norm = jnp.linalg.norm(noise) |
|
step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 |
|
step_size = step_size * jnp.ones(sample.shape[0]) |
|
|
|
|
|
step_size = step_size.flatten() |
|
step_size = broadcast_to_shape_from_left(step_size, sample.shape) |
|
prev_sample_mean = sample + step_size * model_output |
|
prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise |
|
|
|
if not return_dict: |
|
return (prev_sample, state) |
|
|
|
return FlaxSdeVeOutput(prev_sample=prev_sample, state=state) |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|