|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput |
|
from .scheduling_utils import SchedulerMixin |
|
|
|
|
|
@dataclass |
|
class VQDiffusionSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`torch.LongTensor` of shape `(batch size, num latent pixels)`): |
|
Computed sample x_{t-1} of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
""" |
|
|
|
prev_sample: torch.LongTensor |
|
|
|
|
|
def index_to_log_onehot(x: torch.LongTensor, num_classes: int) -> torch.FloatTensor: |
|
""" |
|
Convert batch of vector of class indices into batch of log onehot vectors |
|
|
|
Args: |
|
x (`torch.LongTensor` of shape `(batch size, vector length)`): |
|
Batch of class indices |
|
|
|
num_classes (`int`): |
|
number of classes to be used for the onehot vectors |
|
|
|
Returns: |
|
`torch.FloatTensor` of shape `(batch size, num classes, vector length)`: |
|
Log onehot vectors |
|
""" |
|
x_onehot = F.one_hot(x, num_classes) |
|
x_onehot = x_onehot.permute(0, 2, 1) |
|
log_x = torch.log(x_onehot.float().clamp(min=1e-30)) |
|
return log_x |
|
|
|
|
|
def gumbel_noised(logits: torch.FloatTensor, generator: Optional[torch.Generator]) -> torch.FloatTensor: |
|
""" |
|
Apply gumbel noise to `logits` |
|
""" |
|
uniform = torch.rand(logits.shape, device=logits.device, generator=generator) |
|
gumbel_noise = -torch.log(-torch.log(uniform + 1e-30) + 1e-30) |
|
noised = gumbel_noise + logits |
|
return noised |
|
|
|
|
|
def alpha_schedules(num_diffusion_timesteps: int, alpha_cum_start=0.99999, alpha_cum_end=0.000009): |
|
""" |
|
Cumulative and non-cumulative alpha schedules. |
|
|
|
See section 4.1. |
|
""" |
|
att = ( |
|
np.arange(0, num_diffusion_timesteps) / (num_diffusion_timesteps - 1) * (alpha_cum_end - alpha_cum_start) |
|
+ alpha_cum_start |
|
) |
|
att = np.concatenate(([1], att)) |
|
at = att[1:] / att[:-1] |
|
att = np.concatenate((att[1:], [1])) |
|
return at, att |
|
|
|
|
|
def gamma_schedules(num_diffusion_timesteps: int, gamma_cum_start=0.000009, gamma_cum_end=0.99999): |
|
""" |
|
Cumulative and non-cumulative gamma schedules. |
|
|
|
See section 4.1. |
|
""" |
|
ctt = ( |
|
np.arange(0, num_diffusion_timesteps) / (num_diffusion_timesteps - 1) * (gamma_cum_end - gamma_cum_start) |
|
+ gamma_cum_start |
|
) |
|
ctt = np.concatenate(([0], ctt)) |
|
one_minus_ctt = 1 - ctt |
|
one_minus_ct = one_minus_ctt[1:] / one_minus_ctt[:-1] |
|
ct = 1 - one_minus_ct |
|
ctt = np.concatenate((ctt[1:], [0])) |
|
return ct, ctt |
|
|
|
|
|
class VQDiffusionScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
The VQ-diffusion transformer outputs predicted probabilities of the initial unnoised image. |
|
|
|
The VQ-diffusion scheduler converts the transformer's output into a sample for the unnoised image at the previous |
|
diffusion timestep. |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
For more details, see the original paper: https://arxiv.org/abs/2111.14822 |
|
|
|
Args: |
|
num_vec_classes (`int`): |
|
The number of classes of the vector embeddings of the latent pixels. Includes the class for the masked |
|
latent pixel. |
|
|
|
num_train_timesteps (`int`): |
|
Number of diffusion steps used to train the model. |
|
|
|
alpha_cum_start (`float`): |
|
The starting cumulative alpha value. |
|
|
|
alpha_cum_end (`float`): |
|
The ending cumulative alpha value. |
|
|
|
gamma_cum_start (`float`): |
|
The starting cumulative gamma value. |
|
|
|
gamma_cum_end (`float`): |
|
The ending cumulative gamma value. |
|
""" |
|
|
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_vec_classes: int, |
|
num_train_timesteps: int = 100, |
|
alpha_cum_start: float = 0.99999, |
|
alpha_cum_end: float = 0.000009, |
|
gamma_cum_start: float = 0.000009, |
|
gamma_cum_end: float = 0.99999, |
|
): |
|
self.num_embed = num_vec_classes |
|
|
|
|
|
self.mask_class = self.num_embed - 1 |
|
|
|
at, att = alpha_schedules(num_train_timesteps, alpha_cum_start=alpha_cum_start, alpha_cum_end=alpha_cum_end) |
|
ct, ctt = gamma_schedules(num_train_timesteps, gamma_cum_start=gamma_cum_start, gamma_cum_end=gamma_cum_end) |
|
|
|
num_non_mask_classes = self.num_embed - 1 |
|
bt = (1 - at - ct) / num_non_mask_classes |
|
btt = (1 - att - ctt) / num_non_mask_classes |
|
|
|
at = torch.tensor(at.astype("float64")) |
|
bt = torch.tensor(bt.astype("float64")) |
|
ct = torch.tensor(ct.astype("float64")) |
|
log_at = torch.log(at) |
|
log_bt = torch.log(bt) |
|
log_ct = torch.log(ct) |
|
|
|
att = torch.tensor(att.astype("float64")) |
|
btt = torch.tensor(btt.astype("float64")) |
|
ctt = torch.tensor(ctt.astype("float64")) |
|
log_cumprod_at = torch.log(att) |
|
log_cumprod_bt = torch.log(btt) |
|
log_cumprod_ct = torch.log(ctt) |
|
|
|
self.log_at = log_at.float() |
|
self.log_bt = log_bt.float() |
|
self.log_ct = log_ct.float() |
|
self.log_cumprod_at = log_cumprod_at.float() |
|
self.log_cumprod_bt = log_cumprod_bt.float() |
|
self.log_cumprod_ct = log_cumprod_ct.float() |
|
|
|
|
|
self.num_inference_steps = None |
|
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) |
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
|
|
device (`str` or `torch.device`): |
|
device to place the timesteps and the diffusion process parameters (alpha, beta, gamma) on. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
timesteps = np.arange(0, self.num_inference_steps)[::-1].copy() |
|
self.timesteps = torch.from_numpy(timesteps).to(device) |
|
|
|
self.log_at = self.log_at.to(device) |
|
self.log_bt = self.log_bt.to(device) |
|
self.log_ct = self.log_ct.to(device) |
|
self.log_cumprod_at = self.log_cumprod_at.to(device) |
|
self.log_cumprod_bt = self.log_cumprod_bt.to(device) |
|
self.log_cumprod_ct = self.log_cumprod_ct.to(device) |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: torch.long, |
|
sample: torch.LongTensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[VQDiffusionSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep via the reverse transition distribution i.e. Equation (11). See the |
|
docstring for `self.q_posterior` for more in depth docs on how Equation (11) is computed. |
|
|
|
Args: |
|
log_p_x_0: (`torch.FloatTensor` of shape `(batch size, num classes - 1, num latent pixels)`): |
|
The log probabilities for the predicted classes of the initial latent pixels. Does not include a |
|
prediction for the masked class as the initial unnoised image cannot be masked. |
|
|
|
t (`torch.long`): |
|
The timestep that determines which transition matrices are used. |
|
|
|
x_t: (`torch.LongTensor` of shape `(batch size, num latent pixels)`): |
|
The classes of each latent pixel at time `t` |
|
|
|
generator: (`torch.Generator` or None): |
|
RNG for the noise applied to p(x_{t-1} | x_t) before it is sampled from. |
|
|
|
return_dict (`bool`): |
|
option for returning tuple rather than VQDiffusionSchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.VQDiffusionSchedulerOutput`] or `tuple`: |
|
[`~schedulers.scheduling_utils.VQDiffusionSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. |
|
When returning a tuple, the first element is the sample tensor. |
|
""" |
|
if timestep == 0: |
|
log_p_x_t_min_1 = model_output |
|
else: |
|
log_p_x_t_min_1 = self.q_posterior(model_output, sample, timestep) |
|
|
|
log_p_x_t_min_1 = gumbel_noised(log_p_x_t_min_1, generator) |
|
|
|
x_t_min_1 = log_p_x_t_min_1.argmax(dim=1) |
|
|
|
if not return_dict: |
|
return (x_t_min_1,) |
|
|
|
return VQDiffusionSchedulerOutput(prev_sample=x_t_min_1) |
|
|
|
def q_posterior(self, log_p_x_0, x_t, t): |
|
""" |
|
Calculates the log probabilities for the predicted classes of the image at timestep `t-1`. I.e. Equation (11). |
|
|
|
Instead of directly computing equation (11), we use Equation (5) to restate Equation (11) in terms of only |
|
forward probabilities. |
|
|
|
Equation (11) stated in terms of forward probabilities via Equation (5): |
|
|
|
Where: |
|
- the sum is over x_0 = {C_0 ... C_{k-1}} (classes for x_0) |
|
|
|
p(x_{t-1} | x_t) = sum( q(x_t | x_{t-1}) * q(x_{t-1} | x_0) * p(x_0) / q(x_t | x_0) ) |
|
|
|
Args: |
|
log_p_x_0: (`torch.FloatTensor` of shape `(batch size, num classes - 1, num latent pixels)`): |
|
The log probabilities for the predicted classes of the initial latent pixels. Does not include a |
|
prediction for the masked class as the initial unnoised image cannot be masked. |
|
|
|
x_t: (`torch.LongTensor` of shape `(batch size, num latent pixels)`): |
|
The classes of each latent pixel at time `t` |
|
|
|
t (torch.Long): |
|
The timestep that determines which transition matrix is used. |
|
|
|
Returns: |
|
`torch.FloatTensor` of shape `(batch size, num classes, num latent pixels)`: |
|
The log probabilities for the predicted classes of the image at timestep `t-1`. I.e. Equation (11). |
|
""" |
|
log_onehot_x_t = index_to_log_onehot(x_t, self.num_embed) |
|
|
|
log_q_x_t_given_x_0 = self.log_Q_t_transitioning_to_known_class( |
|
t=t, x_t=x_t, log_onehot_x_t=log_onehot_x_t, cumulative=True |
|
) |
|
|
|
log_q_t_given_x_t_min_1 = self.log_Q_t_transitioning_to_known_class( |
|
t=t, x_t=x_t, log_onehot_x_t=log_onehot_x_t, cumulative=False |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
q = log_p_x_0 - log_q_x_t_given_x_0 |
|
|
|
|
|
|
|
q_log_sum_exp = torch.logsumexp(q, dim=1, keepdim=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
q = q - q_log_sum_exp |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q = self.apply_cumulative_transitions(q, t - 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
log_p_x_t_min_1 = q + log_q_t_given_x_t_min_1 + q_log_sum_exp |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return log_p_x_t_min_1 |
|
|
|
def log_Q_t_transitioning_to_known_class( |
|
self, *, t: torch.int, x_t: torch.LongTensor, log_onehot_x_t: torch.FloatTensor, cumulative: bool |
|
): |
|
""" |
|
Returns the log probabilities of the rows from the (cumulative or non-cumulative) transition matrix for each |
|
latent pixel in `x_t`. |
|
|
|
See equation (7) for the complete non-cumulative transition matrix. The complete cumulative transition matrix |
|
is the same structure except the parameters (alpha, beta, gamma) are the cumulative analogs. |
|
|
|
Args: |
|
t (torch.Long): |
|
The timestep that determines which transition matrix is used. |
|
|
|
x_t (`torch.LongTensor` of shape `(batch size, num latent pixels)`): |
|
The classes of each latent pixel at time `t`. |
|
|
|
log_onehot_x_t (`torch.FloatTensor` of shape `(batch size, num classes, num latent pixels)`): |
|
The log one-hot vectors of `x_t` |
|
|
|
cumulative (`bool`): |
|
If cumulative is `False`, we use the single step transition matrix `t-1`->`t`. If cumulative is `True`, |
|
we use the cumulative transition matrix `0`->`t`. |
|
|
|
Returns: |
|
`torch.FloatTensor` of shape `(batch size, num classes - 1, num latent pixels)`: |
|
Each _column_ of the returned matrix is a _row_ of log probabilities of the complete probability |
|
transition matrix. |
|
|
|
When non cumulative, returns `self.num_classes - 1` rows because the initial latent pixel cannot be |
|
masked. |
|
|
|
Where: |
|
- `q_n` is the probability distribution for the forward process of the `n`th latent pixel. |
|
- C_0 is a class of a latent pixel embedding |
|
- C_k is the class of the masked latent pixel |
|
|
|
non-cumulative result (omitting logarithms): |
|
``` |
|
q_0(x_t | x_{t-1} = C_0) ... q_n(x_t | x_{t-1} = C_0) |
|
. . . |
|
. . . |
|
. . . |
|
q_0(x_t | x_{t-1} = C_k) ... q_n(x_t | x_{t-1} = C_k) |
|
``` |
|
|
|
cumulative result (omitting logarithms): |
|
``` |
|
q_0_cumulative(x_t | x_0 = C_0) ... q_n_cumulative(x_t | x_0 = C_0) |
|
. . . |
|
. . . |
|
. . . |
|
q_0_cumulative(x_t | x_0 = C_{k-1}) ... q_n_cumulative(x_t | x_0 = C_{k-1}) |
|
``` |
|
""" |
|
if cumulative: |
|
a = self.log_cumprod_at[t] |
|
b = self.log_cumprod_bt[t] |
|
c = self.log_cumprod_ct[t] |
|
else: |
|
a = self.log_at[t] |
|
b = self.log_bt[t] |
|
c = self.log_ct[t] |
|
|
|
if not cumulative: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
log_onehot_x_t_transitioning_from_masked = log_onehot_x_t[:, -1, :].unsqueeze(1) |
|
|
|
|
|
|
|
|
|
log_onehot_x_t = log_onehot_x_t[:, :-1, :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
log_Q_t = (log_onehot_x_t + a).logaddexp(b) |
|
|
|
|
|
mask_class_mask = x_t == self.mask_class |
|
mask_class_mask = mask_class_mask.unsqueeze(1).expand(-1, self.num_embed - 1, -1) |
|
log_Q_t[mask_class_mask] = c |
|
|
|
if not cumulative: |
|
log_Q_t = torch.cat((log_Q_t, log_onehot_x_t_transitioning_from_masked), dim=1) |
|
|
|
return log_Q_t |
|
|
|
def apply_cumulative_transitions(self, q, t): |
|
bsz = q.shape[0] |
|
a = self.log_cumprod_at[t] |
|
b = self.log_cumprod_bt[t] |
|
c = self.log_cumprod_ct[t] |
|
|
|
num_latent_pixels = q.shape[2] |
|
c = c.expand(bsz, 1, num_latent_pixels) |
|
|
|
q = (q + a).logaddexp(b) |
|
q = torch.cat((q, c), dim=1) |
|
|
|
return q |
|
|