# Copyright 2023 FLAIR Lab and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: check https://arxiv.org/abs/2204.13902 and https://github.com/qsh-zh/deis for more info # The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) class DEISMultistepScheduler(SchedulerMixin, ConfigMixin): """ DEIS (https://arxiv.org/abs/2204.13902) is a fast high order solver for diffusion ODEs. We slightly modify the polynomial fitting formula in log-rho space instead of the original linear t space in DEIS paper. The modification enjoys closed-form coefficients for exponential multistep update instead of replying on the numerical solver. More variants of DEIS can be found in https://github.com/qsh-zh/deis. Currently, we support the log-rho multistep DEIS. We recommend to use `solver_order=2 / 3` while `solver_order=1` reduces to DDIM. We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space diffusion models, you can set `thresholding=True` to use the dynamic thresholding. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. solver_order (`int`, default `2`): the order of DEIS; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. prediction_type (`str`, default `epsilon`): indicates whether the model predicts the noise (epsilon), or the data / `x0`. One of `epsilon`, `sample`, or `v-prediction`. thresholding (`bool`, default `False`): whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). Note that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion). dynamic_thresholding_ratio (`float`, default `0.995`): the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen (https://arxiv.org/abs/2205.11487). sample_max_value (`float`, default `1.0`): the threshold value for dynamic thresholding. Valid woks when `thresholding=True` algorithm_type (`str`, default `deis`): the algorithm type for the solver. current we support multistep deis, we will add other variants of DEIS in the future lower_order_final (`bool`, default `True`): whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically find this trick can stabilize the sampling of DEIS for steps < 15, especially for steps <= 10. """ _compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[np.ndarray] = None, solver_order: int = 2, prediction_type: str = "epsilon", thresholding: bool = False, dynamic_thresholding_ratio: float = 0.995, sample_max_value: float = 1.0, algorithm_type: str = "deis", solver_type: str = "logrho", lower_order_final: bool = True, ): if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = ( torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) # Currently we only support VP-type noise schedule self.alpha_t = torch.sqrt(self.alphas_cumprod) self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # settings for DEIS if algorithm_type not in ["deis"]: if algorithm_type in ["dpmsolver", "dpmsolver++"]: algorithm_type = "deis" else: raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}") if solver_type not in ["logrho"]: if solver_type in ["midpoint", "heun", "bh1", "bh2"]: solver_type = "logrho" else: raise NotImplementedError(f"solver type {solver_type} does is not implemented for {self.__class__}") # setable values self.num_inference_steps = None timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() self.timesteps = torch.from_numpy(timesteps) self.model_outputs = [None] * solver_order self.lower_order_nums = 0 def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, optional): the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.num_inference_steps = num_inference_steps timesteps = ( np.linspace(0, self.num_train_timesteps - 1, num_inference_steps + 1) .round()[::-1][:-1] .copy() .astype(np.int64) ) self.timesteps = torch.from_numpy(timesteps).to(device) self.model_outputs = [ None, ] * self.config.solver_order self.lower_order_nums = 0 def convert_model_output( self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor ) -> torch.FloatTensor: """ Convert the model output to the corresponding type that the algorithm DEIS needs. Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. Returns: `torch.FloatTensor`: the converted model output. """ if self.config.prediction_type == "epsilon": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] x0_pred = (sample - sigma_t * model_output) / alpha_t elif self.config.prediction_type == "sample": x0_pred = model_output elif self.config.prediction_type == "v_prediction": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] x0_pred = alpha_t * sample - sigma_t * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction` for the DEISMultistepScheduler." ) if self.config.thresholding: # Dynamic thresholding in https://arxiv.org/abs/2205.11487 orig_dtype = x0_pred.dtype if orig_dtype not in [torch.float, torch.double]: x0_pred = x0_pred.float() dynamic_max_val = torch.quantile( torch.abs(x0_pred).reshape((x0_pred.shape[0], -1)), self.config.dynamic_thresholding_ratio, dim=1 ) dynamic_max_val = torch.maximum( dynamic_max_val, self.config.sample_max_value * torch.ones_like(dynamic_max_val).to(dynamic_max_val.device), )[(...,) + (None,) * (x0_pred.ndim - 1)] x0_pred = torch.clamp(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val x0_pred = x0_pred.type(orig_dtype) if self.config.algorithm_type == "deis": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] return (sample - alpha_t * x0_pred) / sigma_t else: raise NotImplementedError("only support log-rho multistep deis now") def deis_first_order_update( self, model_output: torch.FloatTensor, timestep: int, prev_timestep: int, sample: torch.FloatTensor, ) -> torch.FloatTensor: """ One step for the first-order DEIS (equivalent to DDIM). Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. prev_timestep (`int`): previous discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. Returns: `torch.FloatTensor`: the sample tensor at the previous timestep. """ lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep] alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep] sigma_t, _ = self.sigma_t[prev_timestep], self.sigma_t[timestep] h = lambda_t - lambda_s if self.config.algorithm_type == "deis": x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output else: raise NotImplementedError("only support log-rho multistep deis now") return x_t def multistep_deis_second_order_update( self, model_output_list: List[torch.FloatTensor], timestep_list: List[int], prev_timestep: int, sample: torch.FloatTensor, ) -> torch.FloatTensor: """ One step for the second-order multistep DEIS. Args: model_output_list (`List[torch.FloatTensor]`): direct outputs from learned diffusion model at current and latter timesteps. timestep (`int`): current and latter discrete timestep in the diffusion chain. prev_timestep (`int`): previous discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. Returns: `torch.FloatTensor`: the sample tensor at the previous timestep. """ t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] m0, m1 = model_output_list[-1], model_output_list[-2] alpha_t, alpha_s0, alpha_s1 = self.alpha_t[t], self.alpha_t[s0], self.alpha_t[s1] sigma_t, sigma_s0, sigma_s1 = self.sigma_t[t], self.sigma_t[s0], self.sigma_t[s1] rho_t, rho_s0, rho_s1 = sigma_t / alpha_t, sigma_s0 / alpha_s0, sigma_s1 / alpha_s1 if self.config.algorithm_type == "deis": def ind_fn(t, b, c): # Integrate[(log(t) - log(c)) / (log(b) - log(c)), {t}] return t * (-np.log(c) + np.log(t) - 1) / (np.log(b) - np.log(c)) coef1 = ind_fn(rho_t, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s0, rho_s1) coef2 = ind_fn(rho_t, rho_s1, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s0) x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1) return x_t else: raise NotImplementedError("only support log-rho multistep deis now") def multistep_deis_third_order_update( self, model_output_list: List[torch.FloatTensor], timestep_list: List[int], prev_timestep: int, sample: torch.FloatTensor, ) -> torch.FloatTensor: """ One step for the third-order multistep DEIS. Args: model_output_list (`List[torch.FloatTensor]`): direct outputs from learned diffusion model at current and latter timesteps. timestep (`int`): current and latter discrete timestep in the diffusion chain. prev_timestep (`int`): previous discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. Returns: `torch.FloatTensor`: the sample tensor at the previous timestep. """ t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3] m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] alpha_t, alpha_s0, alpha_s1, alpha_s2 = self.alpha_t[t], self.alpha_t[s0], self.alpha_t[s1], self.alpha_t[s2] sigma_t, sigma_s0, sigma_s1, simga_s2 = self.sigma_t[t], self.sigma_t[s0], self.sigma_t[s1], self.sigma_t[s2] rho_t, rho_s0, rho_s1, rho_s2 = ( sigma_t / alpha_t, sigma_s0 / alpha_s0, sigma_s1 / alpha_s1, simga_s2 / alpha_s2, ) if self.config.algorithm_type == "deis": def ind_fn(t, b, c, d): # Integrate[(log(t) - log(c))(log(t) - log(d)) / (log(b) - log(c))(log(b) - log(d)), {t}] numerator = t * ( np.log(c) * (np.log(d) - np.log(t) + 1) - np.log(d) * np.log(t) + np.log(d) + np.log(t) ** 2 - 2 * np.log(t) + 2 ) denominator = (np.log(b) - np.log(c)) * (np.log(b) - np.log(d)) return numerator / denominator coef1 = ind_fn(rho_t, rho_s0, rho_s1, rho_s2) - ind_fn(rho_s0, rho_s0, rho_s1, rho_s2) coef2 = ind_fn(rho_t, rho_s1, rho_s2, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s2, rho_s0) coef3 = ind_fn(rho_t, rho_s2, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s2, rho_s0, rho_s1) x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1 + coef3 * m2) return x_t else: raise NotImplementedError("only support log-rho multistep deis now") def step( self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Step function propagating the sample with the multistep DEIS. Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) step_index = (self.timesteps == timestep).nonzero() if len(step_index) == 0: step_index = len(self.timesteps) - 1 else: step_index = step_index.item() prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1] lower_order_final = ( (step_index == len(self.timesteps) - 1) and self.config.lower_order_final and len(self.timesteps) < 15 ) lower_order_second = ( (step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15 ) model_output = self.convert_model_output(model_output, timestep, sample) for i in range(self.config.solver_order - 1): self.model_outputs[i] = self.model_outputs[i + 1] self.model_outputs[-1] = model_output if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: prev_sample = self.deis_first_order_update(model_output, timestep, prev_timestep, sample) elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: timestep_list = [self.timesteps[step_index - 1], timestep] prev_sample = self.multistep_deis_second_order_update( self.model_outputs, timestep_list, prev_timestep, sample ) else: timestep_list = [self.timesteps[step_index - 2], self.timesteps[step_index - 1], timestep] prev_sample = self.multistep_deis_third_order_update( self.model_outputs, timestep_list, prev_timestep, sample ) if self.lower_order_nums < self.config.solver_order: self.lower_order_nums += 1 if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.FloatTensor`): input sample Returns: `torch.FloatTensor`: scaled input sample """ return sample def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor, ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps