# Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): """ DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality samples, and it can generate quite good samples even in only 10 steps. For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095 Currently, we support the multistep DPM-Solver for both noise prediction models and data prediction models. We recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion). [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. solver_order (`int`, default `2`): the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) thresholding (`bool`, default `False`): whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion). dynamic_thresholding_ratio (`float`, default `0.995`): the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen (https://arxiv.org/abs/2205.11487). sample_max_value (`float`, default `1.0`): the threshold value for dynamic thresholding. Valid only when `thresholding=True` and `algorithm_type="dpmsolver++`. algorithm_type (`str`, default `dpmsolver++`): the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++`. The `dpmsolver` type implements the algorithms in https://arxiv.org/abs/2206.00927, and the `dpmsolver++` type implements the algorithms in https://arxiv.org/abs/2211.01095. We recommend to use `dpmsolver++` with `solver_order=2` for guided sampling (e.g. stable-diffusion). solver_type (`str`, default `midpoint`): the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are slightly better, so we recommend to use the `midpoint` type. lower_order_final (`bool`, default `True`): whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10. """ _compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, solver_order: int = 2, prediction_type: str = "epsilon", thresholding: bool = False, dynamic_thresholding_ratio: float = 0.995, sample_max_value: float = 1.0, algorithm_type: str = "dpmsolver++", solver_type: str = "midpoint", lower_order_final: bool = True, ): if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = ( torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) # Currently we only support VP-type noise schedule self.alpha_t = torch.sqrt(self.alphas_cumprod) self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # settings for DPM-Solver if algorithm_type not in ["dpmsolver", "dpmsolver++"]: if algorithm_type == "deis": algorithm_type = "dpmsolver++" else: raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}") if solver_type not in ["midpoint", "heun"]: if solver_type in ["logrho", "bh1", "bh2"]: solver_type = "midpoint" else: raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}") # setable values self.num_inference_steps = None timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() self.timesteps = torch.from_numpy(timesteps) self.model_outputs = [None] * solver_order self.lower_order_nums = 0 def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, optional): the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.num_inference_steps = num_inference_steps timesteps = ( np.linspace(0, self.num_train_timesteps - 1, num_inference_steps + 1) .round()[::-1][:-1] .copy() .astype(np.int64) ) self.timesteps = torch.from_numpy(timesteps).to(device) self.model_outputs = [ None, ] * self.config.solver_order self.lower_order_nums = 0 def convert_model_output( self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor ) -> torch.FloatTensor: """ Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs. DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an integral of the data prediction model. So we need to first convert the model output to the corresponding type to match the algorithm. Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or DPM-Solver++ for both noise prediction model and data prediction model. Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. Returns: `torch.FloatTensor`: the converted model output. """ # DPM-Solver++ needs to solve an integral of the data prediction model. if self.config.algorithm_type == "dpmsolver++": if self.config.prediction_type == "epsilon": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] x0_pred = (sample - sigma_t * model_output) / alpha_t elif self.config.prediction_type == "sample": x0_pred = model_output elif self.config.prediction_type == "v_prediction": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] x0_pred = alpha_t * sample - sigma_t * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction` for the DPMSolverMultistepScheduler." ) if self.config.thresholding: # Dynamic thresholding in https://arxiv.org/abs/2205.11487 orig_dtype = x0_pred.dtype if orig_dtype not in [torch.float, torch.double]: x0_pred = x0_pred.float() dynamic_max_val = torch.quantile( torch.abs(x0_pred).reshape((x0_pred.shape[0], -1)), self.config.dynamic_thresholding_ratio, dim=1 ) dynamic_max_val = torch.maximum( dynamic_max_val, self.config.sample_max_value * torch.ones_like(dynamic_max_val).to(dynamic_max_val.device), )[(...,) + (None,) * (x0_pred.ndim - 1)] x0_pred = torch.clamp(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val x0_pred = x0_pred.type(orig_dtype) return x0_pred # DPM-Solver needs to solve an integral of the noise prediction model. elif self.config.algorithm_type == "dpmsolver": if self.config.prediction_type == "epsilon": return model_output elif self.config.prediction_type == "sample": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] epsilon = (sample - alpha_t * model_output) / sigma_t return epsilon elif self.config.prediction_type == "v_prediction": alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] epsilon = alpha_t * model_output + sigma_t * sample return epsilon else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction` for the DPMSolverMultistepScheduler." ) def dpm_solver_first_order_update( self, model_output: torch.FloatTensor, timestep: int, prev_timestep: int, sample: torch.FloatTensor, ) -> torch.FloatTensor: """ One step for the first-order DPM-Solver (equivalent to DDIM). See https://arxiv.org/abs/2206.00927 for the detailed derivation. Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. prev_timestep (`int`): previous discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. Returns: `torch.FloatTensor`: the sample tensor at the previous timestep. """ lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep] alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep] sigma_t, sigma_s = self.sigma_t[prev_timestep], self.sigma_t[timestep] h = lambda_t - lambda_s if self.config.algorithm_type == "dpmsolver++": x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output elif self.config.algorithm_type == "dpmsolver": x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output return x_t def multistep_dpm_solver_second_order_update( self, model_output_list: List[torch.FloatTensor], timestep_list: List[int], prev_timestep: int, sample: torch.FloatTensor, ) -> torch.FloatTensor: """ One step for the second-order multistep DPM-Solver. Args: model_output_list (`List[torch.FloatTensor]`): direct outputs from learned diffusion model at current and latter timesteps. timestep (`int`): current and latter discrete timestep in the diffusion chain. prev_timestep (`int`): previous discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. Returns: `torch.FloatTensor`: the sample tensor at the previous timestep. """ t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] m0, m1 = model_output_list[-1], model_output_list[-2] lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1] alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 r0 = h_0 / h D0, D1 = m0, (1.0 / r0) * (m0 - m1) if self.config.algorithm_type == "dpmsolver++": # See https://arxiv.org/abs/2211.01095 for detailed derivations if self.config.solver_type == "midpoint": x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * D0 - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 ) elif self.config.solver_type == "heun": x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * D0 + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 ) elif self.config.algorithm_type == "dpmsolver": # See https://arxiv.org/abs/2206.00927 for detailed derivations if self.config.solver_type == "midpoint": x_t = ( (alpha_t / alpha_s0) * sample - (sigma_t * (torch.exp(h) - 1.0)) * D0 - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1 ) elif self.config.solver_type == "heun": x_t = ( (alpha_t / alpha_s0) * sample - (sigma_t * (torch.exp(h) - 1.0)) * D0 - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 ) return x_t def multistep_dpm_solver_third_order_update( self, model_output_list: List[torch.FloatTensor], timestep_list: List[int], prev_timestep: int, sample: torch.FloatTensor, ) -> torch.FloatTensor: """ One step for the third-order multistep DPM-Solver. Args: model_output_list (`List[torch.FloatTensor]`): direct outputs from learned diffusion model at current and latter timesteps. timestep (`int`): current and latter discrete timestep in the diffusion chain. prev_timestep (`int`): previous discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. Returns: `torch.FloatTensor`: the sample tensor at the previous timestep. """ t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3] m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] lambda_t, lambda_s0, lambda_s1, lambda_s2 = ( self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1], self.lambda_t[s2], ) alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 r0, r1 = h_0 / h, h_1 / h D0 = m0 D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) if self.config.algorithm_type == "dpmsolver++": # See https://arxiv.org/abs/2206.00927 for detailed derivations x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * D0 + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2 ) elif self.config.algorithm_type == "dpmsolver": # See https://arxiv.org/abs/2206.00927 for detailed derivations x_t = ( (alpha_t / alpha_s0) * sample - (sigma_t * (torch.exp(h) - 1.0)) * D0 - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2 ) return x_t def step( self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Step function propagating the sample with the multistep DPM-Solver. Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) step_index = (self.timesteps == timestep).nonzero() if len(step_index) == 0: step_index = len(self.timesteps) - 1 else: step_index = step_index.item() prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1] lower_order_final = ( (step_index == len(self.timesteps) - 1) and self.config.lower_order_final and len(self.timesteps) < 15 ) lower_order_second = ( (step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15 ) model_output = self.convert_model_output(model_output, timestep, sample) for i in range(self.config.solver_order - 1): self.model_outputs[i] = self.model_outputs[i + 1] self.model_outputs[-1] = model_output if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: prev_sample = self.dpm_solver_first_order_update(model_output, timestep, prev_timestep, sample) elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: timestep_list = [self.timesteps[step_index - 1], timestep] prev_sample = self.multistep_dpm_solver_second_order_update( self.model_outputs, timestep_list, prev_timestep, sample ) else: timestep_list = [self.timesteps[step_index - 2], self.timesteps[step_index - 1], timestep] prev_sample = self.multistep_dpm_solver_third_order_update( self.model_outputs, timestep_list, prev_timestep, sample ) if self.lower_order_nums < self.config.solver_order: self.lower_order_nums += 1 if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.FloatTensor`): input sample Returns: `torch.FloatTensor`: scaled input sample """ return sample def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor, ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps