# Copyright 2023 Katherine Crowson and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, logging, randn_tensor from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete class EulerDiscreteSchedulerOutput(BaseOutput): """ Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin): """ Euler scheduler (Algorithm 2) from Karras et al. (2022) https://arxiv.org/abs/2206.00364. . Based on the original k-diffusion implementation by Katherine Crowson: https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L51 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear` or `scaled_linear`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. prediction_type (`str`, default `"epsilon"`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) interpolation_type (`str`, default `"linear"`, optional): interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be one of [`"linear"`, `"log_linear"`]. """ _compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, prediction_type: str = "epsilon", interpolation_type: str = "linear", ): if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = ( torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) self.sigmas = torch.from_numpy(sigmas) # standard deviation of the initial noise distribution self.init_noise_sigma = self.sigmas.max() # setable values self.num_inference_steps = None timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() self.timesteps = torch.from_numpy(timesteps) self.is_scale_input_called = False def scale_model_input( self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] ) -> torch.FloatTensor: """ Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. Args: sample (`torch.FloatTensor`): input sample timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain Returns: `torch.FloatTensor`: scaled input sample """ if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) step_index = (self.timesteps == timestep).nonzero().item() sigma = self.sigmas[step_index] sample = sample / ((sigma**2 + 1) ** 0.5) self.is_scale_input_called = True return sample def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, optional): the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.num_inference_steps = num_inference_steps timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) if self.config.interpolation_type == "linear": sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) elif self.config.interpolation_type == "log_linear": sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp() else: raise ValueError( f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either" " 'linear' or 'log_linear'" ) sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) self.sigmas = torch.from_numpy(sigmas).to(device=device) if str(device).startswith("mps"): # mps does not support float64 self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32) else: self.timesteps = torch.from_numpy(timesteps).to(device=device) def step( self, model_output: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], sample: torch.FloatTensor, s_churn: float = 0.0, s_tmin: float = 0.0, s_tmax: float = float("inf"), s_noise: float = 1.0, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[EulerDiscreteSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`float`): current timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. s_churn (`float`) s_tmin (`float`) s_tmax (`float`) s_noise (`float`) generator (`torch.Generator`, optional): Random number generator. return_dict (`bool`): option for returning tuple rather than EulerDiscreteSchedulerOutput class Returns: [`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if ( isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor) ): raise ValueError( ( "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" " one of the `scheduler.timesteps` as a timestep." ), ) if not self.is_scale_input_called: logger.warning( "The `scale_model_input` function should be called before `step` to ensure correct denoising. " "See `StableDiffusionPipeline` for a usage example." ) if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) step_index = (self.timesteps == timestep).nonzero().item() sigma = self.sigmas[step_index] gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 noise = randn_tensor( model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator ) eps = noise * s_noise sigma_hat = sigma * (gamma + 1) if gamma > 0: sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise # NOTE: "original_sample" should not be an expected prediction_type but is left in for # backwards compatibility if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample": pred_original_sample = model_output elif self.config.prediction_type == "epsilon": pred_original_sample = sample - sigma_hat * model_output elif self.config.prediction_type == "v_prediction": # * c_out + input * c_skip pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) # 2. Convert to an ODE derivative derivative = (sample - pred_original_sample) / sigma_hat dt = self.sigmas[step_index + 1] - sigma_hat prev_sample = sample + derivative * dt if not return_dict: return (prev_sample,) return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.FloatTensor, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): # mps does not support float64 self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) timesteps = timesteps.to(original_samples.device, dtype=torch.float32) else: self.timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device) schedule_timesteps = self.timesteps step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] sigma = self.sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps