diff --git "a/src/unet_block_hacked_garmnet.py" "b/src/unet_block_hacked_garmnet.py"
new file mode 100644--- /dev/null
+++ "b/src/unet_block_hacked_garmnet.py"
@@ -0,0 +1,3579 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import Any, Dict, Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+from diffusers.utils import is_torch_version, logging
+from diffusers.utils.torch_utils import apply_freeu
+from diffusers.models.activations import get_activation
+from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
+from diffusers.models.dual_transformer_2d import DualTransformer2DModel
+from diffusers.models.normalization import AdaGroupNorm
+from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
+from src.transformerhacked_garmnet import Transformer2DModel
+from einops import rearrange
+
+logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
+
+
+def get_down_block(
+    down_block_type: str,
+    num_layers: int,
+    in_channels: int,
+    out_channels: int,
+    temb_channels: int,
+    add_downsample: bool,
+    resnet_eps: float,
+    resnet_act_fn: str,
+    transformer_layers_per_block: int = 1,
+    num_attention_heads: Optional[int] = None,
+    resnet_groups: Optional[int] = None,
+    cross_attention_dim: Optional[int] = None,
+    downsample_padding: Optional[int] = None,
+    dual_cross_attention: bool = False,
+    use_linear_projection: bool = False,
+    only_cross_attention: bool = False,
+    upcast_attention: bool = False,
+    resnet_time_scale_shift: str = "default",
+    attention_type: str = "default",
+    resnet_skip_time_act: bool = False,
+    resnet_out_scale_factor: float = 1.0,
+    cross_attention_norm: Optional[str] = None,
+    attention_head_dim: Optional[int] = None,
+    downsample_type: Optional[str] = None,
+    dropout: float = 0.0,
+):
+    # If attn head dim is not defined, we default it to the number of heads
+    if attention_head_dim is None:
+        logger.warn(
+            f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
+        )
+        attention_head_dim = num_attention_heads
+
+    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
+    if down_block_type == "DownBlock2D":
+        return DownBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            temb_channels=temb_channels,
+            dropout=dropout,
+            add_downsample=add_downsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            downsample_padding=downsample_padding,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+        )
+    elif down_block_type == "ResnetDownsampleBlock2D":
+        return ResnetDownsampleBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            temb_channels=temb_channels,
+            dropout=dropout,
+            add_downsample=add_downsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+            skip_time_act=resnet_skip_time_act,
+            output_scale_factor=resnet_out_scale_factor,
+        )
+    elif down_block_type == "AttnDownBlock2D":
+        if add_downsample is False:
+            downsample_type = None
+        else:
+            downsample_type = downsample_type or "conv"  # default to 'conv'
+        return AttnDownBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            temb_channels=temb_channels,
+            dropout=dropout,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            downsample_padding=downsample_padding,
+            attention_head_dim=attention_head_dim,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+            downsample_type=downsample_type,
+        )
+    elif down_block_type == "CrossAttnDownBlock2D":
+        if cross_attention_dim is None:
+            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
+        return CrossAttnDownBlock2D(
+            num_layers=num_layers,
+            transformer_layers_per_block=transformer_layers_per_block,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            temb_channels=temb_channels,
+            dropout=dropout,
+            add_downsample=add_downsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            downsample_padding=downsample_padding,
+            cross_attention_dim=cross_attention_dim,
+            num_attention_heads=num_attention_heads,
+            dual_cross_attention=dual_cross_attention,
+            use_linear_projection=use_linear_projection,
+            only_cross_attention=only_cross_attention,
+            upcast_attention=upcast_attention,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+            attention_type=attention_type,
+        )
+    elif down_block_type == "SimpleCrossAttnDownBlock2D":
+        if cross_attention_dim is None:
+            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
+        return SimpleCrossAttnDownBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            temb_channels=temb_channels,
+            dropout=dropout,
+            add_downsample=add_downsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            cross_attention_dim=cross_attention_dim,
+            attention_head_dim=attention_head_dim,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+            skip_time_act=resnet_skip_time_act,
+            output_scale_factor=resnet_out_scale_factor,
+            only_cross_attention=only_cross_attention,
+            cross_attention_norm=cross_attention_norm,
+        )
+    elif down_block_type == "SkipDownBlock2D":
+        return SkipDownBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            temb_channels=temb_channels,
+            dropout=dropout,
+            add_downsample=add_downsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            downsample_padding=downsample_padding,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+        )
+    elif down_block_type == "AttnSkipDownBlock2D":
+        return AttnSkipDownBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            temb_channels=temb_channels,
+            dropout=dropout,
+            add_downsample=add_downsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            attention_head_dim=attention_head_dim,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+        )
+    elif down_block_type == "DownEncoderBlock2D":
+        return DownEncoderBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            dropout=dropout,
+            add_downsample=add_downsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            downsample_padding=downsample_padding,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+        )
+    elif down_block_type == "AttnDownEncoderBlock2D":
+        return AttnDownEncoderBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            dropout=dropout,
+            add_downsample=add_downsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            downsample_padding=downsample_padding,
+            attention_head_dim=attention_head_dim,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+        )
+    elif down_block_type == "KDownBlock2D":
+        return KDownBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            temb_channels=temb_channels,
+            dropout=dropout,
+            add_downsample=add_downsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+        )
+    elif down_block_type == "KCrossAttnDownBlock2D":
+        return KCrossAttnDownBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            temb_channels=temb_channels,
+            dropout=dropout,
+            add_downsample=add_downsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            cross_attention_dim=cross_attention_dim,
+            attention_head_dim=attention_head_dim,
+            add_self_attention=True if not add_downsample else False,
+        )
+    raise ValueError(f"{down_block_type} does not exist.")
+
+
+def get_up_block(
+    up_block_type: str,
+    num_layers: int,
+    in_channels: int,
+    out_channels: int,
+    prev_output_channel: int,
+    temb_channels: int,
+    add_upsample: bool,
+    resnet_eps: float,
+    resnet_act_fn: str,
+    resolution_idx: Optional[int] = None,
+    transformer_layers_per_block: int = 1,
+    num_attention_heads: Optional[int] = None,
+    resnet_groups: Optional[int] = None,
+    cross_attention_dim: Optional[int] = None,
+    dual_cross_attention: bool = False,
+    use_linear_projection: bool = False,
+    only_cross_attention: bool = False,
+    upcast_attention: bool = False,
+    resnet_time_scale_shift: str = "default",
+    attention_type: str = "default",
+    resnet_skip_time_act: bool = False,
+    resnet_out_scale_factor: float = 1.0,
+    cross_attention_norm: Optional[str] = None,
+    attention_head_dim: Optional[int] = None,
+    upsample_type: Optional[str] = None,
+    dropout: float = 0.0,
+) -> nn.Module:
+    # If attn head dim is not defined, we default it to the number of heads
+    if attention_head_dim is None:
+        logger.warn(
+            f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
+        )
+        attention_head_dim = num_attention_heads
+
+    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
+    if up_block_type == "UpBlock2D":
+        return UpBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            prev_output_channel=prev_output_channel,
+            temb_channels=temb_channels,
+            resolution_idx=resolution_idx,
+            dropout=dropout,
+            add_upsample=add_upsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+        )
+    elif up_block_type == "ResnetUpsampleBlock2D":
+        return ResnetUpsampleBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            prev_output_channel=prev_output_channel,
+            temb_channels=temb_channels,
+            resolution_idx=resolution_idx,
+            dropout=dropout,
+            add_upsample=add_upsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+            skip_time_act=resnet_skip_time_act,
+            output_scale_factor=resnet_out_scale_factor,
+        )
+    elif up_block_type == "CrossAttnUpBlock2D":
+        if cross_attention_dim is None:
+            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
+        return CrossAttnUpBlock2D(
+            num_layers=num_layers,
+            transformer_layers_per_block=transformer_layers_per_block,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            prev_output_channel=prev_output_channel,
+            temb_channels=temb_channels,
+            resolution_idx=resolution_idx,
+            dropout=dropout,
+            add_upsample=add_upsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            cross_attention_dim=cross_attention_dim,
+            num_attention_heads=num_attention_heads,
+            dual_cross_attention=dual_cross_attention,
+            use_linear_projection=use_linear_projection,
+            only_cross_attention=only_cross_attention,
+            upcast_attention=upcast_attention,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+            attention_type=attention_type,
+        )
+    elif up_block_type == "SimpleCrossAttnUpBlock2D":
+        if cross_attention_dim is None:
+            raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
+        return SimpleCrossAttnUpBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            prev_output_channel=prev_output_channel,
+            temb_channels=temb_channels,
+            resolution_idx=resolution_idx,
+            dropout=dropout,
+            add_upsample=add_upsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            cross_attention_dim=cross_attention_dim,
+            attention_head_dim=attention_head_dim,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+            skip_time_act=resnet_skip_time_act,
+            output_scale_factor=resnet_out_scale_factor,
+            only_cross_attention=only_cross_attention,
+            cross_attention_norm=cross_attention_norm,
+        )
+    elif up_block_type == "AttnUpBlock2D":
+        if add_upsample is False:
+            upsample_type = None
+        else:
+            upsample_type = upsample_type or "conv"  # default to 'conv'
+
+        return AttnUpBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            prev_output_channel=prev_output_channel,
+            temb_channels=temb_channels,
+            resolution_idx=resolution_idx,
+            dropout=dropout,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            attention_head_dim=attention_head_dim,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+            upsample_type=upsample_type,
+        )
+    elif up_block_type == "SkipUpBlock2D":
+        return SkipUpBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            prev_output_channel=prev_output_channel,
+            temb_channels=temb_channels,
+            resolution_idx=resolution_idx,
+            dropout=dropout,
+            add_upsample=add_upsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+        )
+    elif up_block_type == "AttnSkipUpBlock2D":
+        return AttnSkipUpBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            prev_output_channel=prev_output_channel,
+            temb_channels=temb_channels,
+            resolution_idx=resolution_idx,
+            dropout=dropout,
+            add_upsample=add_upsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            attention_head_dim=attention_head_dim,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+        )
+    elif up_block_type == "UpDecoderBlock2D":
+        return UpDecoderBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            resolution_idx=resolution_idx,
+            dropout=dropout,
+            add_upsample=add_upsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+            temb_channels=temb_channels,
+        )
+    elif up_block_type == "AttnUpDecoderBlock2D":
+        return AttnUpDecoderBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            resolution_idx=resolution_idx,
+            dropout=dropout,
+            add_upsample=add_upsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            resnet_groups=resnet_groups,
+            attention_head_dim=attention_head_dim,
+            resnet_time_scale_shift=resnet_time_scale_shift,
+            temb_channels=temb_channels,
+        )
+    elif up_block_type == "KUpBlock2D":
+        return KUpBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            temb_channels=temb_channels,
+            resolution_idx=resolution_idx,
+            dropout=dropout,
+            add_upsample=add_upsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+        )
+    elif up_block_type == "KCrossAttnUpBlock2D":
+        return KCrossAttnUpBlock2D(
+            num_layers=num_layers,
+            in_channels=in_channels,
+            out_channels=out_channels,
+            temb_channels=temb_channels,
+            resolution_idx=resolution_idx,
+            dropout=dropout,
+            add_upsample=add_upsample,
+            resnet_eps=resnet_eps,
+            resnet_act_fn=resnet_act_fn,
+            cross_attention_dim=cross_attention_dim,
+            attention_head_dim=attention_head_dim,
+        )
+
+    raise ValueError(f"{up_block_type} does not exist.")
+
+
+class AutoencoderTinyBlock(nn.Module):
+    """
+    Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
+    blocks.
+
+    Args:
+        in_channels (`int`): The number of input channels.
+        out_channels (`int`): The number of output channels.
+        act_fn (`str`):
+            ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
+
+    Returns:
+        `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
+        `out_channels`.
+    """
+
+    def __init__(self, in_channels: int, out_channels: int, act_fn: str):
+        super().__init__()
+        act_fn = get_activation(act_fn)
+        self.conv = nn.Sequential(
+            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
+            act_fn,
+            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
+            act_fn,
+            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
+        )
+        self.skip = (
+            nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
+            if in_channels != out_channels
+            else nn.Identity()
+        )
+        self.fuse = nn.ReLU()
+
+    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
+        return self.fuse(self.conv(x) + self.skip(x))
+
+
+class UNetMidBlock2D(nn.Module):
+    """
+    A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.
+
+    Args:
+        in_channels (`int`): The number of input channels.
+        temb_channels (`int`): The number of temporal embedding channels.
+        dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
+        num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
+        resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
+        resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
+            The type of normalization to apply to the time embeddings. This can help to improve the performance of the
+            model on tasks with long-range temporal dependencies.
+        resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
+        resnet_groups (`int`, *optional*, defaults to 32):
+            The number of groups to use in the group normalization layers of the resnet blocks.
+        attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
+        resnet_pre_norm (`bool`, *optional*, defaults to `True`):
+            Whether to use pre-normalization for the resnet blocks.
+        add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
+        attention_head_dim (`int`, *optional*, defaults to 1):
+            Dimension of a single attention head. The number of attention heads is determined based on this value and
+            the number of input channels.
+        output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
+
+    Returns:
+        `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
+        in_channels, height, width)`.
+
+    """
+
+    def __init__(
+        self,
+        in_channels: int,
+        temb_channels: int,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",  # default, spatial
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        attn_groups: Optional[int] = None,
+        resnet_pre_norm: bool = True,
+        add_attention: bool = True,
+        attention_head_dim: int = 1,
+        output_scale_factor: float = 1.0,
+    ):
+        super().__init__()
+        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+        self.add_attention = add_attention
+
+        if attn_groups is None:
+            attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None
+
+        # there is always at least one resnet
+        resnets = [
+            ResnetBlock2D(
+                in_channels=in_channels,
+                out_channels=in_channels,
+                temb_channels=temb_channels,
+                eps=resnet_eps,
+                groups=resnet_groups,
+                dropout=dropout,
+                time_embedding_norm=resnet_time_scale_shift,
+                non_linearity=resnet_act_fn,
+                output_scale_factor=output_scale_factor,
+                pre_norm=resnet_pre_norm,
+            )
+        ]
+        attentions = []
+
+        if attention_head_dim is None:
+            logger.warn(
+                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
+            )
+            attention_head_dim = in_channels
+
+        for _ in range(num_layers):
+            if self.add_attention:
+                attentions.append(
+                    Attention(
+                        in_channels,
+                        heads=in_channels // attention_head_dim,
+                        dim_head=attention_head_dim,
+                        rescale_output_factor=output_scale_factor,
+                        eps=resnet_eps,
+                        norm_num_groups=attn_groups,
+                        spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
+                        residual_connection=True,
+                        bias=True,
+                        upcast_softmax=True,
+                        _from_deprecated_attn_block=True,
+                    )
+                )
+            else:
+                attentions.append(None)
+
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=in_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+
+        self.attentions = nn.ModuleList(attentions)
+        self.resnets = nn.ModuleList(resnets)
+
+    def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
+        hidden_states = self.resnets[0](hidden_states, temb)
+        for attn, resnet in zip(self.attentions, self.resnets[1:]):
+            if attn is not None:
+                hidden_states = attn(hidden_states, temb=temb)
+            hidden_states = resnet(hidden_states, temb)
+
+        return hidden_states
+
+
+class UNetMidBlock2DCrossAttn(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        temb_channels: int,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        num_attention_heads: int = 1,
+        output_scale_factor: float = 1.0,
+        cross_attention_dim: int = 1280,
+        dual_cross_attention: bool = False,
+        use_linear_projection: bool = False,
+        upcast_attention: bool = False,
+        attention_type: str = "default",
+    ):
+        super().__init__()
+
+        self.has_cross_attention = True
+        self.num_attention_heads = num_attention_heads
+        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+
+        # support for variable transformer layers per block
+        if isinstance(transformer_layers_per_block, int):
+            transformer_layers_per_block = [transformer_layers_per_block] * num_layers
+
+        # there is always at least one resnet
+        resnets = [
+            ResnetBlock2D(
+                in_channels=in_channels,
+                out_channels=in_channels,
+                temb_channels=temb_channels,
+                eps=resnet_eps,
+                groups=resnet_groups,
+                dropout=dropout,
+                time_embedding_norm=resnet_time_scale_shift,
+                non_linearity=resnet_act_fn,
+                output_scale_factor=output_scale_factor,
+                pre_norm=resnet_pre_norm,
+            )
+        ]
+        attentions = []
+
+        for i in range(num_layers):
+            if not dual_cross_attention:
+                attentions.append(
+                    Transformer2DModel(
+                        num_attention_heads,
+                        in_channels // num_attention_heads,
+                        in_channels=in_channels,
+                        num_layers=transformer_layers_per_block[i],
+                        cross_attention_dim=cross_attention_dim,
+                        norm_num_groups=resnet_groups,
+                        use_linear_projection=use_linear_projection,
+                        upcast_attention=upcast_attention,
+                        attention_type=attention_type,
+                    )
+                )
+            else:
+                attentions.append(
+                    DualTransformer2DModel(
+                        num_attention_heads,
+                        in_channels // num_attention_heads,
+                        in_channels=in_channels,
+                        num_layers=1,
+                        cross_attention_dim=cross_attention_dim,
+                        norm_num_groups=resnet_groups,
+                    )
+                )
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=in_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+
+        self.attentions = nn.ModuleList(attentions)
+        self.resnets = nn.ModuleList(resnets)
+
+        self.gradient_checkpointing = False
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        temb: Optional[torch.FloatTensor] = None,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+    ) -> torch.FloatTensor:
+        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
+        garment_features = []
+        for attn, resnet in zip(self.attentions, self.resnets[1:]):
+            if self.training and self.gradient_checkpointing:
+
+                def create_custom_forward(module, return_dict=None):
+                    def custom_forward(*inputs):
+                        if return_dict is not None:
+                            return module(*inputs, return_dict=return_dict)
+                        else:
+                            return module(*inputs)
+
+                    return custom_forward
+
+                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+                # hidden_states = attn(
+                hidden_states,out_garment_feat = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    attention_mask=attention_mask,
+                    encoder_attention_mask=encoder_attention_mask,
+                    return_dict=False,
+                )
+                hidden_states=hidden_states[0]
+                hidden_states = torch.utils.checkpoint.checkpoint(
+                    create_custom_forward(resnet),
+                    hidden_states,
+                    temb,
+                    **ckpt_kwargs,
+                )
+            else:
+                # hidden_states= attn(
+                hidden_states,out_garment_feat = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    attention_mask=attention_mask,
+                    encoder_attention_mask=encoder_attention_mask,
+                    return_dict=False,
+                )
+                hidden_states=hidden_states[0]
+                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+            garment_features += out_garment_feat
+        return hidden_states,garment_features
+        # return hidden_states 
+
+
+class UNetMidBlock2DSimpleCrossAttn(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        temb_channels: int,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        attention_head_dim: int = 1,
+        output_scale_factor: float = 1.0,
+        cross_attention_dim: int = 1280,
+        skip_time_act: bool = False,
+        only_cross_attention: bool = False,
+        cross_attention_norm: Optional[str] = None,
+    ):
+        super().__init__()
+
+        self.has_cross_attention = True
+
+        self.attention_head_dim = attention_head_dim
+        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+
+        self.num_heads = in_channels // self.attention_head_dim
+
+        # there is always at least one resnet
+        resnets = [
+            ResnetBlock2D(
+                in_channels=in_channels,
+                out_channels=in_channels,
+                temb_channels=temb_channels,
+                eps=resnet_eps,
+                groups=resnet_groups,
+                dropout=dropout,
+                time_embedding_norm=resnet_time_scale_shift,
+                non_linearity=resnet_act_fn,
+                output_scale_factor=output_scale_factor,
+                pre_norm=resnet_pre_norm,
+                skip_time_act=skip_time_act,
+            )
+        ]
+        attentions = []
+
+        for _ in range(num_layers):
+            processor = (
+                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
+            )
+
+            attentions.append(
+                Attention(
+                    query_dim=in_channels,
+                    cross_attention_dim=in_channels,
+                    heads=self.num_heads,
+                    dim_head=self.attention_head_dim,
+                    added_kv_proj_dim=cross_attention_dim,
+                    norm_num_groups=resnet_groups,
+                    bias=True,
+                    upcast_softmax=True,
+                    only_cross_attention=only_cross_attention,
+                    cross_attention_norm=cross_attention_norm,
+                    processor=processor,
+                )
+            )
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=in_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                    skip_time_act=skip_time_act,
+                )
+            )
+
+        self.attentions = nn.ModuleList(attentions)
+        self.resnets = nn.ModuleList(resnets)
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        temb: Optional[torch.FloatTensor] = None,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+    ) -> torch.FloatTensor:
+        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+        lora_scale = cross_attention_kwargs.get("scale", 1.0)
+
+        if attention_mask is None:
+            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
+            mask = None if encoder_hidden_states is None else encoder_attention_mask
+        else:
+            # when attention_mask is defined: we don't even check for encoder_attention_mask.
+            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
+            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
+            #       then we can simplify this whole if/else block to:
+            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
+            mask = attention_mask
+
+        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
+        for attn, resnet in zip(self.attentions, self.resnets[1:]):
+            # attn
+            hidden_states = attn(
+                hidden_states,
+                encoder_hidden_states=encoder_hidden_states,
+                attention_mask=mask,
+                **cross_attention_kwargs,
+            )
+
+            # resnet
+            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+
+        return hidden_states
+
+
+class AttnDownBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        temb_channels: int,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        attention_head_dim: int = 1,
+        output_scale_factor: float = 1.0,
+        downsample_padding: int = 1,
+        downsample_type: str = "conv",
+    ):
+        super().__init__()
+        resnets = []
+        attentions = []
+        self.downsample_type = downsample_type
+
+        if attention_head_dim is None:
+            logger.warn(
+                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
+            )
+            attention_head_dim = out_channels
+
+        for i in range(num_layers):
+            in_channels = in_channels if i == 0 else out_channels
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+            attentions.append(
+                Attention(
+                    out_channels,
+                    heads=out_channels // attention_head_dim,
+                    dim_head=attention_head_dim,
+                    rescale_output_factor=output_scale_factor,
+                    eps=resnet_eps,
+                    norm_num_groups=resnet_groups,
+                    residual_connection=True,
+                    bias=True,
+                    upcast_softmax=True,
+                    _from_deprecated_attn_block=True,
+                )
+            )
+
+        self.attentions = nn.ModuleList(attentions)
+        self.resnets = nn.ModuleList(resnets)
+
+        if downsample_type == "conv":
+            self.downsamplers = nn.ModuleList(
+                [
+                    Downsample2D(
+                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+                    )
+                ]
+            )
+        elif downsample_type == "resnet":
+            self.downsamplers = nn.ModuleList(
+                [
+                    ResnetBlock2D(
+                        in_channels=out_channels,
+                        out_channels=out_channels,
+                        temb_channels=temb_channels,
+                        eps=resnet_eps,
+                        groups=resnet_groups,
+                        dropout=dropout,
+                        time_embedding_norm=resnet_time_scale_shift,
+                        non_linearity=resnet_act_fn,
+                        output_scale_factor=output_scale_factor,
+                        pre_norm=resnet_pre_norm,
+                        down=True,
+                    )
+                ]
+            )
+        else:
+            self.downsamplers = None
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        temb: Optional[torch.FloatTensor] = None,
+        upsample_size: Optional[int] = None,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+        lora_scale = cross_attention_kwargs.get("scale", 1.0)
+
+        output_states = ()
+
+        for resnet, attn in zip(self.resnets, self.attentions):
+            cross_attention_kwargs.update({"scale": lora_scale})
+            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+            hidden_states = attn(hidden_states, **cross_attention_kwargs)
+            output_states = output_states + (hidden_states,)
+
+        if self.downsamplers is not None:
+            for downsampler in self.downsamplers:
+                if self.downsample_type == "resnet":
+                    hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale)
+                else:
+                    hidden_states = downsampler(hidden_states, scale=lora_scale)
+
+            output_states += (hidden_states,)
+
+        return hidden_states, output_states
+
+
+class CrossAttnDownBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        temb_channels: int,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        num_attention_heads: int = 1,
+        cross_attention_dim: int = 1280,
+        output_scale_factor: float = 1.0,
+        downsample_padding: int = 1,
+        add_downsample: bool = True,
+        dual_cross_attention: bool = False,
+        use_linear_projection: bool = False,
+        only_cross_attention: bool = False,
+        upcast_attention: bool = False,
+        attention_type: str = "default",
+    ):
+        super().__init__()
+        resnets = []
+        attentions = []
+
+        self.has_cross_attention = True
+        self.num_attention_heads = num_attention_heads
+        if isinstance(transformer_layers_per_block, int):
+            transformer_layers_per_block = [transformer_layers_per_block] * num_layers
+
+        for i in range(num_layers):
+            in_channels = in_channels if i == 0 else out_channels
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+            if not dual_cross_attention:
+                attentions.append(
+                    Transformer2DModel(
+                        num_attention_heads,
+                        out_channels // num_attention_heads,
+                        in_channels=out_channels,
+                        num_layers=transformer_layers_per_block[i],
+                        cross_attention_dim=cross_attention_dim,
+                        norm_num_groups=resnet_groups,
+                        use_linear_projection=use_linear_projection,
+                        only_cross_attention=only_cross_attention,
+                        upcast_attention=upcast_attention,
+                        attention_type=attention_type,
+                    )
+                )
+            else:
+                attentions.append(
+                    DualTransformer2DModel(
+                        num_attention_heads,
+                        out_channels // num_attention_heads,
+                        in_channels=out_channels,
+                        num_layers=1,
+                        cross_attention_dim=cross_attention_dim,
+                        norm_num_groups=resnet_groups,
+                    )
+                )
+        self.attentions = nn.ModuleList(attentions)
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_downsample:
+            self.downsamplers = nn.ModuleList(
+                [
+                    Downsample2D(
+                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+                    )
+                ]
+            )
+        else:
+            self.downsamplers = None
+
+        self.gradient_checkpointing = False
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        temb: Optional[torch.FloatTensor] = None,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+        additional_residuals: Optional[torch.FloatTensor] = None,
+    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+        output_states = ()
+
+        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+
+        blocks = list(zip(self.resnets, self.attentions))
+        garment_features = []
+        for i, (resnet, attn) in enumerate(blocks):
+            if self.training and self.gradient_checkpointing:
+
+                def create_custom_forward(module, return_dict=None):
+                    def custom_forward(*inputs):
+                        if return_dict is not None:
+                            return module(*inputs, return_dict=return_dict)
+                        else:
+                            return module(*inputs)
+
+                    return custom_forward
+
+                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+                hidden_states = torch.utils.checkpoint.checkpoint(
+                    create_custom_forward(resnet),
+                    hidden_states,
+                    temb,
+                    **ckpt_kwargs,
+                )
+                hidden_states,out_garment_feat = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    attention_mask=attention_mask,
+                    encoder_attention_mask=encoder_attention_mask,
+                    return_dict=False,
+                )
+                hidden_states=hidden_states[0]
+            else:
+                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+                hidden_states,out_garment_feat = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    attention_mask=attention_mask,
+                    encoder_attention_mask=encoder_attention_mask,
+                    return_dict=False,
+                )
+                hidden_states=hidden_states[0]
+            garment_features += out_garment_feat
+            # apply additional residuals to the output of the last pair of resnet and attention blocks
+            if i == len(blocks) - 1 and additional_residuals is not None:
+                hidden_states = hidden_states + additional_residuals
+
+            output_states = output_states + (hidden_states,)
+
+        if self.downsamplers is not None:
+            for downsampler in self.downsamplers:
+                hidden_states = downsampler(hidden_states, scale=lora_scale)
+
+            output_states = output_states + (hidden_states,)
+
+        return hidden_states, output_states,garment_features
+
+
+class DownBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        temb_channels: int,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        output_scale_factor: float = 1.0,
+        add_downsample: bool = True,
+        downsample_padding: int = 1,
+    ):
+        super().__init__()
+        resnets = []
+
+        for i in range(num_layers):
+            in_channels = in_channels if i == 0 else out_channels
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_downsample:
+            self.downsamplers = nn.ModuleList(
+                [
+                    Downsample2D(
+                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+                    )
+                ]
+            )
+        else:
+            self.downsamplers = None
+
+        self.gradient_checkpointing = False
+
+    def forward(
+        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+        output_states = ()
+
+        for resnet in self.resnets:
+            if self.training and self.gradient_checkpointing:
+
+                def create_custom_forward(module):
+                    def custom_forward(*inputs):
+                        return module(*inputs)
+
+                    return custom_forward
+
+                if is_torch_version(">=", "1.11.0"):
+                    hidden_states = torch.utils.checkpoint.checkpoint(
+                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+                    )
+                else:
+                    hidden_states = torch.utils.checkpoint.checkpoint(
+                        create_custom_forward(resnet), hidden_states, temb
+                    )
+            else:
+                hidden_states = resnet(hidden_states, temb, scale=scale)
+
+            output_states = output_states + (hidden_states,)
+
+        if self.downsamplers is not None:
+            for downsampler in self.downsamplers:
+                hidden_states = downsampler(hidden_states, scale=scale)
+
+            output_states = output_states + (hidden_states,)
+
+        return hidden_states, output_states
+
+
+class DownEncoderBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        output_scale_factor: float = 1.0,
+        add_downsample: bool = True,
+        downsample_padding: int = 1,
+    ):
+        super().__init__()
+        resnets = []
+
+        for i in range(num_layers):
+            in_channels = in_channels if i == 0 else out_channels
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=out_channels,
+                    temb_channels=None,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_downsample:
+            self.downsamplers = nn.ModuleList(
+                [
+                    Downsample2D(
+                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+                    )
+                ]
+            )
+        else:
+            self.downsamplers = None
+
+    def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
+        for resnet in self.resnets:
+            hidden_states = resnet(hidden_states, temb=None, scale=scale)
+
+        if self.downsamplers is not None:
+            for downsampler in self.downsamplers:
+                hidden_states = downsampler(hidden_states, scale)
+
+        return hidden_states
+
+
+class AttnDownEncoderBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        attention_head_dim: int = 1,
+        output_scale_factor: float = 1.0,
+        add_downsample: bool = True,
+        downsample_padding: int = 1,
+    ):
+        super().__init__()
+        resnets = []
+        attentions = []
+
+        if attention_head_dim is None:
+            logger.warn(
+                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
+            )
+            attention_head_dim = out_channels
+
+        for i in range(num_layers):
+            in_channels = in_channels if i == 0 else out_channels
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=out_channels,
+                    temb_channels=None,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+            attentions.append(
+                Attention(
+                    out_channels,
+                    heads=out_channels // attention_head_dim,
+                    dim_head=attention_head_dim,
+                    rescale_output_factor=output_scale_factor,
+                    eps=resnet_eps,
+                    norm_num_groups=resnet_groups,
+                    residual_connection=True,
+                    bias=True,
+                    upcast_softmax=True,
+                    _from_deprecated_attn_block=True,
+                )
+            )
+
+        self.attentions = nn.ModuleList(attentions)
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_downsample:
+            self.downsamplers = nn.ModuleList(
+                [
+                    Downsample2D(
+                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
+                    )
+                ]
+            )
+        else:
+            self.downsamplers = None
+
+    def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
+        for resnet, attn in zip(self.resnets, self.attentions):
+            hidden_states = resnet(hidden_states, temb=None, scale=scale)
+            cross_attention_kwargs = {"scale": scale}
+            hidden_states = attn(hidden_states, **cross_attention_kwargs)
+
+        if self.downsamplers is not None:
+            for downsampler in self.downsamplers:
+                hidden_states = downsampler(hidden_states, scale)
+
+        return hidden_states
+
+
+class AttnSkipDownBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        temb_channels: int,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_pre_norm: bool = True,
+        attention_head_dim: int = 1,
+        output_scale_factor: float = np.sqrt(2.0),
+        add_downsample: bool = True,
+    ):
+        super().__init__()
+        self.attentions = nn.ModuleList([])
+        self.resnets = nn.ModuleList([])
+
+        if attention_head_dim is None:
+            logger.warn(
+                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
+            )
+            attention_head_dim = out_channels
+
+        for i in range(num_layers):
+            in_channels = in_channels if i == 0 else out_channels
+            self.resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=min(in_channels // 4, 32),
+                    groups_out=min(out_channels // 4, 32),
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+            self.attentions.append(
+                Attention(
+                    out_channels,
+                    heads=out_channels // attention_head_dim,
+                    dim_head=attention_head_dim,
+                    rescale_output_factor=output_scale_factor,
+                    eps=resnet_eps,
+                    norm_num_groups=32,
+                    residual_connection=True,
+                    bias=True,
+                    upcast_softmax=True,
+                    _from_deprecated_attn_block=True,
+                )
+            )
+
+        if add_downsample:
+            self.resnet_down = ResnetBlock2D(
+                in_channels=out_channels,
+                out_channels=out_channels,
+                temb_channels=temb_channels,
+                eps=resnet_eps,
+                groups=min(out_channels // 4, 32),
+                dropout=dropout,
+                time_embedding_norm=resnet_time_scale_shift,
+                non_linearity=resnet_act_fn,
+                output_scale_factor=output_scale_factor,
+                pre_norm=resnet_pre_norm,
+                use_in_shortcut=True,
+                down=True,
+                kernel="fir",
+            )
+            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
+            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
+        else:
+            self.resnet_down = None
+            self.downsamplers = None
+            self.skip_conv = None
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        temb: Optional[torch.FloatTensor] = None,
+        skip_sample: Optional[torch.FloatTensor] = None,
+        scale: float = 1.0,
+    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
+        output_states = ()
+
+        for resnet, attn in zip(self.resnets, self.attentions):
+            hidden_states = resnet(hidden_states, temb, scale=scale)
+            cross_attention_kwargs = {"scale": scale}
+            hidden_states = attn(hidden_states, **cross_attention_kwargs)
+            output_states += (hidden_states,)
+
+        if self.downsamplers is not None:
+            hidden_states = self.resnet_down(hidden_states, temb, scale=scale)
+            for downsampler in self.downsamplers:
+                skip_sample = downsampler(skip_sample)
+
+            hidden_states = self.skip_conv(skip_sample) + hidden_states
+
+            output_states += (hidden_states,)
+
+        return hidden_states, output_states, skip_sample
+
+
+class SkipDownBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        temb_channels: int,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_pre_norm: bool = True,
+        output_scale_factor: float = np.sqrt(2.0),
+        add_downsample: bool = True,
+        downsample_padding: int = 1,
+    ):
+        super().__init__()
+        self.resnets = nn.ModuleList([])
+
+        for i in range(num_layers):
+            in_channels = in_channels if i == 0 else out_channels
+            self.resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=min(in_channels // 4, 32),
+                    groups_out=min(out_channels // 4, 32),
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+
+        if add_downsample:
+            self.resnet_down = ResnetBlock2D(
+                in_channels=out_channels,
+                out_channels=out_channels,
+                temb_channels=temb_channels,
+                eps=resnet_eps,
+                groups=min(out_channels // 4, 32),
+                dropout=dropout,
+                time_embedding_norm=resnet_time_scale_shift,
+                non_linearity=resnet_act_fn,
+                output_scale_factor=output_scale_factor,
+                pre_norm=resnet_pre_norm,
+                use_in_shortcut=True,
+                down=True,
+                kernel="fir",
+            )
+            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
+            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
+        else:
+            self.resnet_down = None
+            self.downsamplers = None
+            self.skip_conv = None
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        temb: Optional[torch.FloatTensor] = None,
+        skip_sample: Optional[torch.FloatTensor] = None,
+        scale: float = 1.0,
+    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
+        output_states = ()
+
+        for resnet in self.resnets:
+            hidden_states = resnet(hidden_states, temb, scale)
+            output_states += (hidden_states,)
+
+        if self.downsamplers is not None:
+            hidden_states = self.resnet_down(hidden_states, temb, scale)
+            for downsampler in self.downsamplers:
+                skip_sample = downsampler(skip_sample)
+
+            hidden_states = self.skip_conv(skip_sample) + hidden_states
+
+            output_states += (hidden_states,)
+
+        return hidden_states, output_states, skip_sample
+
+
+class ResnetDownsampleBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        temb_channels: int,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        output_scale_factor: float = 1.0,
+        add_downsample: bool = True,
+        skip_time_act: bool = False,
+    ):
+        super().__init__()
+        resnets = []
+
+        for i in range(num_layers):
+            in_channels = in_channels if i == 0 else out_channels
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                    skip_time_act=skip_time_act,
+                )
+            )
+
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_downsample:
+            self.downsamplers = nn.ModuleList(
+                [
+                    ResnetBlock2D(
+                        in_channels=out_channels,
+                        out_channels=out_channels,
+                        temb_channels=temb_channels,
+                        eps=resnet_eps,
+                        groups=resnet_groups,
+                        dropout=dropout,
+                        time_embedding_norm=resnet_time_scale_shift,
+                        non_linearity=resnet_act_fn,
+                        output_scale_factor=output_scale_factor,
+                        pre_norm=resnet_pre_norm,
+                        skip_time_act=skip_time_act,
+                        down=True,
+                    )
+                ]
+            )
+        else:
+            self.downsamplers = None
+
+        self.gradient_checkpointing = False
+
+    def forward(
+        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+        output_states = ()
+
+        for resnet in self.resnets:
+            if self.training and self.gradient_checkpointing:
+
+                def create_custom_forward(module):
+                    def custom_forward(*inputs):
+                        return module(*inputs)
+
+                    return custom_forward
+
+                if is_torch_version(">=", "1.11.0"):
+                    hidden_states = torch.utils.checkpoint.checkpoint(
+                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+                    )
+                else:
+                    hidden_states = torch.utils.checkpoint.checkpoint(
+                        create_custom_forward(resnet), hidden_states, temb
+                    )
+            else:
+                hidden_states = resnet(hidden_states, temb, scale)
+
+            output_states = output_states + (hidden_states,)
+
+        if self.downsamplers is not None:
+            for downsampler in self.downsamplers:
+                hidden_states = downsampler(hidden_states, temb, scale)
+
+            output_states = output_states + (hidden_states,)
+
+        return hidden_states, output_states
+
+
+class SimpleCrossAttnDownBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        temb_channels: int,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        attention_head_dim: int = 1,
+        cross_attention_dim: int = 1280,
+        output_scale_factor: float = 1.0,
+        add_downsample: bool = True,
+        skip_time_act: bool = False,
+        only_cross_attention: bool = False,
+        cross_attention_norm: Optional[str] = None,
+    ):
+        super().__init__()
+
+        self.has_cross_attention = True
+
+        resnets = []
+        attentions = []
+
+        self.attention_head_dim = attention_head_dim
+        self.num_heads = out_channels // self.attention_head_dim
+
+        for i in range(num_layers):
+            in_channels = in_channels if i == 0 else out_channels
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                    skip_time_act=skip_time_act,
+                )
+            )
+
+            processor = (
+                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
+            )
+
+            attentions.append(
+                Attention(
+                    query_dim=out_channels,
+                    cross_attention_dim=out_channels,
+                    heads=self.num_heads,
+                    dim_head=attention_head_dim,
+                    added_kv_proj_dim=cross_attention_dim,
+                    norm_num_groups=resnet_groups,
+                    bias=True,
+                    upcast_softmax=True,
+                    only_cross_attention=only_cross_attention,
+                    cross_attention_norm=cross_attention_norm,
+                    processor=processor,
+                )
+            )
+        self.attentions = nn.ModuleList(attentions)
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_downsample:
+            self.downsamplers = nn.ModuleList(
+                [
+                    ResnetBlock2D(
+                        in_channels=out_channels,
+                        out_channels=out_channels,
+                        temb_channels=temb_channels,
+                        eps=resnet_eps,
+                        groups=resnet_groups,
+                        dropout=dropout,
+                        time_embedding_norm=resnet_time_scale_shift,
+                        non_linearity=resnet_act_fn,
+                        output_scale_factor=output_scale_factor,
+                        pre_norm=resnet_pre_norm,
+                        skip_time_act=skip_time_act,
+                        down=True,
+                    )
+                ]
+            )
+        else:
+            self.downsamplers = None
+
+        self.gradient_checkpointing = False
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        temb: Optional[torch.FloatTensor] = None,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+        output_states = ()
+        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+        lora_scale = cross_attention_kwargs.get("scale", 1.0)
+
+        if attention_mask is None:
+            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
+            mask = None if encoder_hidden_states is None else encoder_attention_mask
+        else:
+            # when attention_mask is defined: we don't even check for encoder_attention_mask.
+            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
+            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
+            #       then we can simplify this whole if/else block to:
+            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
+            mask = attention_mask
+
+        for resnet, attn in zip(self.resnets, self.attentions):
+            if self.training and self.gradient_checkpointing:
+
+                def create_custom_forward(module, return_dict=None):
+                    def custom_forward(*inputs):
+                        if return_dict is not None:
+                            return module(*inputs, return_dict=return_dict)
+                        else:
+                            return module(*inputs)
+
+                    return custom_forward
+
+                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
+                hidden_states = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    attention_mask=mask,
+                    **cross_attention_kwargs,
+                )
+            else:
+                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+
+                hidden_states = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    attention_mask=mask,
+                    **cross_attention_kwargs,
+                )
+
+            output_states = output_states + (hidden_states,)
+
+        if self.downsamplers is not None:
+            for downsampler in self.downsamplers:
+                hidden_states = downsampler(hidden_states, temb, scale=lora_scale)
+
+            output_states = output_states + (hidden_states,)
+
+        return hidden_states, output_states
+
+
+class KDownBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        temb_channels: int,
+        dropout: float = 0.0,
+        num_layers: int = 4,
+        resnet_eps: float = 1e-5,
+        resnet_act_fn: str = "gelu",
+        resnet_group_size: int = 32,
+        add_downsample: bool = False,
+    ):
+        super().__init__()
+        resnets = []
+
+        for i in range(num_layers):
+            in_channels = in_channels if i == 0 else out_channels
+            groups = in_channels // resnet_group_size
+            groups_out = out_channels // resnet_group_size
+
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=out_channels,
+                    dropout=dropout,
+                    temb_channels=temb_channels,
+                    groups=groups,
+                    groups_out=groups_out,
+                    eps=resnet_eps,
+                    non_linearity=resnet_act_fn,
+                    time_embedding_norm="ada_group",
+                    conv_shortcut_bias=False,
+                )
+            )
+
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_downsample:
+            # YiYi's comments- might be able to use FirDownsample2D, look into details later
+            self.downsamplers = nn.ModuleList([KDownsample2D()])
+        else:
+            self.downsamplers = None
+
+        self.gradient_checkpointing = False
+
+    def forward(
+        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+        output_states = ()
+
+        for resnet in self.resnets:
+            if self.training and self.gradient_checkpointing:
+
+                def create_custom_forward(module):
+                    def custom_forward(*inputs):
+                        return module(*inputs)
+
+                    return custom_forward
+
+                if is_torch_version(">=", "1.11.0"):
+                    hidden_states = torch.utils.checkpoint.checkpoint(
+                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+                    )
+                else:
+                    hidden_states = torch.utils.checkpoint.checkpoint(
+                        create_custom_forward(resnet), hidden_states, temb
+                    )
+            else:
+                hidden_states = resnet(hidden_states, temb, scale)
+
+            output_states += (hidden_states,)
+
+        if self.downsamplers is not None:
+            for downsampler in self.downsamplers:
+                hidden_states = downsampler(hidden_states)
+
+        return hidden_states, output_states
+
+
+class KCrossAttnDownBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        temb_channels: int,
+        cross_attention_dim: int,
+        dropout: float = 0.0,
+        num_layers: int = 4,
+        resnet_group_size: int = 32,
+        add_downsample: bool = True,
+        attention_head_dim: int = 64,
+        add_self_attention: bool = False,
+        resnet_eps: float = 1e-5,
+        resnet_act_fn: str = "gelu",
+    ):
+        super().__init__()
+        resnets = []
+        attentions = []
+
+        self.has_cross_attention = True
+
+        for i in range(num_layers):
+            in_channels = in_channels if i == 0 else out_channels
+            groups = in_channels // resnet_group_size
+            groups_out = out_channels // resnet_group_size
+
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=out_channels,
+                    dropout=dropout,
+                    temb_channels=temb_channels,
+                    groups=groups,
+                    groups_out=groups_out,
+                    eps=resnet_eps,
+                    non_linearity=resnet_act_fn,
+                    time_embedding_norm="ada_group",
+                    conv_shortcut_bias=False,
+                )
+            )
+            attentions.append(
+                KAttentionBlock(
+                    out_channels,
+                    out_channels // attention_head_dim,
+                    attention_head_dim,
+                    cross_attention_dim=cross_attention_dim,
+                    temb_channels=temb_channels,
+                    attention_bias=True,
+                    add_self_attention=add_self_attention,
+                    cross_attention_norm="layer_norm",
+                    group_size=resnet_group_size,
+                )
+            )
+
+        self.resnets = nn.ModuleList(resnets)
+        self.attentions = nn.ModuleList(attentions)
+
+        if add_downsample:
+            self.downsamplers = nn.ModuleList([KDownsample2D()])
+        else:
+            self.downsamplers = None
+
+        self.gradient_checkpointing = False
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        temb: Optional[torch.FloatTensor] = None,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+    ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
+        output_states = ()
+        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+
+        for resnet, attn in zip(self.resnets, self.attentions):
+            if self.training and self.gradient_checkpointing:
+
+                def create_custom_forward(module, return_dict=None):
+                    def custom_forward(*inputs):
+                        if return_dict is not None:
+                            return module(*inputs, return_dict=return_dict)
+                        else:
+                            return module(*inputs)
+
+                    return custom_forward
+
+                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+                hidden_states = torch.utils.checkpoint.checkpoint(
+                    create_custom_forward(resnet),
+                    hidden_states,
+                    temb,
+                    **ckpt_kwargs,
+                )
+                hidden_states = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    emb=temb,
+                    attention_mask=attention_mask,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    encoder_attention_mask=encoder_attention_mask,
+                )
+            else:
+                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+                hidden_states = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    emb=temb,
+                    attention_mask=attention_mask,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    encoder_attention_mask=encoder_attention_mask,
+                )
+
+            if self.downsamplers is None:
+                output_states += (None,)
+            else:
+                output_states += (hidden_states,)
+
+        if self.downsamplers is not None:
+            for downsampler in self.downsamplers:
+                hidden_states = downsampler(hidden_states)
+
+        return hidden_states, output_states
+
+
+class AttnUpBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        prev_output_channel: int,
+        out_channels: int,
+        temb_channels: int,
+        resolution_idx: int = None,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        attention_head_dim: int = 1,
+        output_scale_factor: float = 1.0,
+        upsample_type: str = "conv",
+    ):
+        super().__init__()
+        resnets = []
+        attentions = []
+
+        self.upsample_type = upsample_type
+
+        if attention_head_dim is None:
+            logger.warn(
+                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
+            )
+            attention_head_dim = out_channels
+
+        for i in range(num_layers):
+            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+            resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=resnet_in_channels + res_skip_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+            attentions.append(
+                Attention(
+                    out_channels,
+                    heads=out_channels // attention_head_dim,
+                    dim_head=attention_head_dim,
+                    rescale_output_factor=output_scale_factor,
+                    eps=resnet_eps,
+                    norm_num_groups=resnet_groups,
+                    residual_connection=True,
+                    bias=True,
+                    upcast_softmax=True,
+                    _from_deprecated_attn_block=True,
+                )
+            )
+
+        self.attentions = nn.ModuleList(attentions)
+        self.resnets = nn.ModuleList(resnets)
+
+        if upsample_type == "conv":
+            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+        elif upsample_type == "resnet":
+            self.upsamplers = nn.ModuleList(
+                [
+                    ResnetBlock2D(
+                        in_channels=out_channels,
+                        out_channels=out_channels,
+                        temb_channels=temb_channels,
+                        eps=resnet_eps,
+                        groups=resnet_groups,
+                        dropout=dropout,
+                        time_embedding_norm=resnet_time_scale_shift,
+                        non_linearity=resnet_act_fn,
+                        output_scale_factor=output_scale_factor,
+                        pre_norm=resnet_pre_norm,
+                        up=True,
+                    )
+                ]
+            )
+        else:
+            self.upsamplers = None
+
+        self.resolution_idx = resolution_idx
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+        temb: Optional[torch.FloatTensor] = None,
+        upsample_size: Optional[int] = None,
+        scale: float = 1.0,
+    ) -> torch.FloatTensor:
+        for resnet, attn in zip(self.resnets, self.attentions):
+            # pop res hidden states
+            res_hidden_states = res_hidden_states_tuple[-1]
+            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+            hidden_states = resnet(hidden_states, temb, scale=scale)
+            cross_attention_kwargs = {"scale": scale}
+            hidden_states = attn(hidden_states, **cross_attention_kwargs)
+
+        if self.upsamplers is not None:
+            for upsampler in self.upsamplers:
+                if self.upsample_type == "resnet":
+                    hidden_states = upsampler(hidden_states, temb=temb, scale=scale)
+                else:
+                    hidden_states = upsampler(hidden_states, scale=scale)
+
+        return hidden_states
+
+
+class CrossAttnUpBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        prev_output_channel: int,
+        temb_channels: int,
+        resolution_idx: Optional[int] = None,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        num_attention_heads: int = 1,
+        cross_attention_dim: int = 1280,
+        output_scale_factor: float = 1.0,
+        add_upsample: bool = True,
+        dual_cross_attention: bool = False,
+        use_linear_projection: bool = False,
+        only_cross_attention: bool = False,
+        upcast_attention: bool = False,
+        attention_type: str = "default",
+    ):
+        super().__init__()
+        resnets = []
+        attentions = []
+
+        self.has_cross_attention = True
+        self.num_attention_heads = num_attention_heads
+
+        if isinstance(transformer_layers_per_block, int):
+            transformer_layers_per_block = [transformer_layers_per_block] * num_layers
+
+        for i in range(num_layers):
+            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+            resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=resnet_in_channels + res_skip_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+            if not dual_cross_attention:
+                attentions.append(
+                    Transformer2DModel(
+                        num_attention_heads,
+                        out_channels // num_attention_heads,
+                        in_channels=out_channels,
+                        num_layers=transformer_layers_per_block[i],
+                        cross_attention_dim=cross_attention_dim,
+                        norm_num_groups=resnet_groups,
+                        use_linear_projection=use_linear_projection,
+                        only_cross_attention=only_cross_attention,
+                        upcast_attention=upcast_attention,
+                        attention_type=attention_type,
+                    )
+                )
+            else:
+                attentions.append(
+                    DualTransformer2DModel(
+                        num_attention_heads,
+                        out_channels // num_attention_heads,
+                        in_channels=out_channels,
+                        num_layers=1,
+                        cross_attention_dim=cross_attention_dim,
+                        norm_num_groups=resnet_groups,
+                    )
+                )
+        self.attentions = nn.ModuleList(attentions)
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_upsample:
+            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+        else:
+            self.upsamplers = None
+
+        self.gradient_checkpointing = False
+        self.resolution_idx = resolution_idx
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+        temb: Optional[torch.FloatTensor] = None,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        upsample_size: Optional[int] = None,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+    ) -> torch.FloatTensor:
+        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+        is_freeu_enabled = (
+            getattr(self, "s1", None)
+            and getattr(self, "s2", None)
+            and getattr(self, "b1", None)
+            and getattr(self, "b2", None)
+        )
+        garment_features = []
+        for resnet, attn in zip(self.resnets, self.attentions):
+            # pop res hidden states
+            # print("h.shape")
+            # print(h.shape)
+            # print("hidden_states.shape)
+            # print(hidden_states.shape)
+            # print("attn_block")
+            # print(attn)
+
+            res_hidden_states = res_hidden_states_tuple[-1]
+            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+
+            # FreeU: Only operate on the first two stages
+            if is_freeu_enabled:
+                hidden_states, res_hidden_states = apply_freeu(
+                    self.resolution_idx,
+                    hidden_states,
+                    res_hidden_states,
+                    s1=self.s1,
+                    s2=self.s2,
+                    b1=self.b1,
+                    b2=self.b2,
+                )
+
+            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+            # print(hidden_states.shape)
+            # print(encoder_hidden_states.shape)
+            if self.training and self.gradient_checkpointing:
+
+                def create_custom_forward(module, return_dict=None):
+                    def custom_forward(*inputs):
+                        if return_dict is not None:
+                            return module(*inputs, return_dict=return_dict)
+                        else:
+                            return module(*inputs)
+
+                    return custom_forward
+
+                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+                hidden_states = torch.utils.checkpoint.checkpoint(
+                    create_custom_forward(resnet),
+                    hidden_states,
+                    temb,
+                    **ckpt_kwargs,
+                )
+                hidden_states,out_garment_feat = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    attention_mask=attention_mask,
+                    encoder_attention_mask=encoder_attention_mask,
+                    return_dict=False,
+                )
+                hidden_states=hidden_states[0]
+            else:
+                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+                hidden_states,out_garment_feat = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    attention_mask=attention_mask,
+                    encoder_attention_mask=encoder_attention_mask,
+                    return_dict=False,
+                )
+                hidden_states=hidden_states[0]
+            garment_features += out_garment_feat
+        if self.upsamplers is not None:
+            for upsampler in self.upsamplers:
+                hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
+
+        return hidden_states,garment_features
+
+
+class UpBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        prev_output_channel: int,
+        out_channels: int,
+        temb_channels: int,
+        resolution_idx: Optional[int] = None,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        output_scale_factor: float = 1.0,
+        add_upsample: bool = True,
+    ):
+        super().__init__()
+        resnets = []
+
+        for i in range(num_layers):
+            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+            resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=resnet_in_channels + res_skip_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_upsample:
+            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+        else:
+            self.upsamplers = None
+
+        self.gradient_checkpointing = False
+        self.resolution_idx = resolution_idx
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+        temb: Optional[torch.FloatTensor] = None,
+        upsample_size: Optional[int] = None,
+        scale: float = 1.0,
+    ) -> torch.FloatTensor:
+        is_freeu_enabled = (
+            getattr(self, "s1", None)
+            and getattr(self, "s2", None)
+            and getattr(self, "b1", None)
+            and getattr(self, "b2", None)
+        )
+
+        for resnet in self.resnets:
+            # pop res hidden states
+            res_hidden_states = res_hidden_states_tuple[-1]
+            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+
+            # FreeU: Only operate on the first two stages
+            if is_freeu_enabled:
+                hidden_states, res_hidden_states = apply_freeu(
+                    self.resolution_idx,
+                    hidden_states,
+                    res_hidden_states,
+                    s1=self.s1,
+                    s2=self.s2,
+                    b1=self.b1,
+                    b2=self.b2,
+                )
+
+            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+            if self.training and self.gradient_checkpointing:
+
+                def create_custom_forward(module):
+                    def custom_forward(*inputs):
+                        return module(*inputs)
+
+                    return custom_forward
+
+                if is_torch_version(">=", "1.11.0"):
+                    hidden_states = torch.utils.checkpoint.checkpoint(
+                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+                    )
+                else:
+                    hidden_states = torch.utils.checkpoint.checkpoint(
+                        create_custom_forward(resnet), hidden_states, temb
+                    )
+            else:
+                hidden_states = resnet(hidden_states, temb, scale=scale)
+
+        if self.upsamplers is not None:
+            for upsampler in self.upsamplers:
+                hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
+
+        return hidden_states
+    # def forward(
+    #     self,
+    #     hidden_states: torch.FloatTensor,
+    #     res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+    #     temb: Optional[torch.FloatTensor] = None,
+    #     upsample_size: Optional[int] = None,
+    #     scale: float = 1.0,
+    #     zero_block=None,
+    #     hint=None,
+    # ) -> torch.FloatTensor:
+    #     is_freeu_enabled = (
+    #         getattr(self, "s1", None)
+    #         and getattr(self, "s2", None)
+    #         and getattr(self, "b1", None)
+    #         and getattr(self, "b2", None)
+    #     )
+
+    #     # print(len(self.resnets))
+    #     # print(len(zero_block))
+    #     # print(len(hint))
+    #     # for resnet in self.resnets:
+    #     for resnet, zero,h in zip(self.resnets,zero_block,hint):
+
+    #         # pop res hidden states
+    #         res_hidden_states = res_hidden_states_tuple[-1]
+    #         res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+
+    #         res_hidden_states = res_hidden_states + zero(h)
+    #         # FreeU: Only operate on the first two stages
+    #         if is_freeu_enabled:
+    #             hidden_states, res_hidden_states = apply_freeu(
+    #                 self.resolution_idx,
+    #                 hidden_states,
+    #                 res_hidden_states,
+    #                 s1=self.s1,
+    #                 s2=self.s2,
+    #                 b1=self.b1,
+    #                 b2=self.b2,
+    #             )
+
+    #         # print(hidden_states.shape)
+    #         # # print(h.shape)
+    #         # print(res_hidden_states.shape)
+    #         hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+    #         # print(hidden_states.shape)
+
+    #         if self.training and self.gradient_checkpointing:
+
+    #             def create_custom_forward(module):
+    #                 def custom_forward(*inputs):
+    #                     return module(*inputs)
+
+    #                 return custom_forward
+
+    #             if is_torch_version(">=", "1.11.0"):
+    #                 hidden_states = torch.utils.checkpoint.checkpoint(
+    #                     create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+    #                 )
+    #             else:
+    #                 hidden_states = torch.utils.checkpoint.checkpoint(
+    #                     create_custom_forward(resnet), hidden_states, temb
+    #                 )
+    #         else:
+    #             hidden_states = resnet(hidden_states, temb, scale=scale)
+
+    #     if self.upsamplers is not None:
+    #         for upsampler in self.upsamplers:
+    #             hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
+
+    #     return hidden_states
+
+
+class UpDecoderBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        resolution_idx: Optional[int] = None,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",  # default, spatial
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        output_scale_factor: float = 1.0,
+        add_upsample: bool = True,
+        temb_channels: Optional[int] = None,
+    ):
+        super().__init__()
+        resnets = []
+
+        for i in range(num_layers):
+            input_channels = in_channels if i == 0 else out_channels
+
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=input_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_upsample:
+            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+        else:
+            self.upsamplers = None
+
+        self.resolution_idx = resolution_idx
+
+    def forward(
+        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+    ) -> torch.FloatTensor:
+        for resnet in self.resnets:
+            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
+
+        if self.upsamplers is not None:
+            for upsampler in self.upsamplers:
+                hidden_states = upsampler(hidden_states)
+
+        return hidden_states
+
+
+class AttnUpDecoderBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        resolution_idx: Optional[int] = None,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        attention_head_dim: int = 1,
+        output_scale_factor: float = 1.0,
+        add_upsample: bool = True,
+        temb_channels: Optional[int] = None,
+    ):
+        super().__init__()
+        resnets = []
+        attentions = []
+
+        if attention_head_dim is None:
+            logger.warn(
+                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
+            )
+            attention_head_dim = out_channels
+
+        for i in range(num_layers):
+            input_channels = in_channels if i == 0 else out_channels
+
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=input_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+            attentions.append(
+                Attention(
+                    out_channels,
+                    heads=out_channels // attention_head_dim,
+                    dim_head=attention_head_dim,
+                    rescale_output_factor=output_scale_factor,
+                    eps=resnet_eps,
+                    norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
+                    spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
+                    residual_connection=True,
+                    bias=True,
+                    upcast_softmax=True,
+                    _from_deprecated_attn_block=True,
+                )
+            )
+
+        self.attentions = nn.ModuleList(attentions)
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_upsample:
+            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
+        else:
+            self.upsamplers = None
+
+        self.resolution_idx = resolution_idx
+
+    def forward(
+        self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+    ) -> torch.FloatTensor:
+        for resnet, attn in zip(self.resnets, self.attentions):
+            hidden_states = resnet(hidden_states, temb=temb, scale=scale)
+            cross_attention_kwargs = {"scale": scale}
+            hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs)
+
+        if self.upsamplers is not None:
+            for upsampler in self.upsamplers:
+                hidden_states = upsampler(hidden_states, scale=scale)
+
+        return hidden_states
+
+
+class AttnSkipUpBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        prev_output_channel: int,
+        out_channels: int,
+        temb_channels: int,
+        resolution_idx: Optional[int] = None,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_pre_norm: bool = True,
+        attention_head_dim: int = 1,
+        output_scale_factor: float = np.sqrt(2.0),
+        add_upsample: bool = True,
+    ):
+        super().__init__()
+        self.attentions = nn.ModuleList([])
+        self.resnets = nn.ModuleList([])
+
+        for i in range(num_layers):
+            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+            resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+            self.resnets.append(
+                ResnetBlock2D(
+                    in_channels=resnet_in_channels + res_skip_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
+                    groups_out=min(out_channels // 4, 32),
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+
+        if attention_head_dim is None:
+            logger.warn(
+                f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
+            )
+            attention_head_dim = out_channels
+
+        self.attentions.append(
+            Attention(
+                out_channels,
+                heads=out_channels // attention_head_dim,
+                dim_head=attention_head_dim,
+                rescale_output_factor=output_scale_factor,
+                eps=resnet_eps,
+                norm_num_groups=32,
+                residual_connection=True,
+                bias=True,
+                upcast_softmax=True,
+                _from_deprecated_attn_block=True,
+            )
+        )
+
+        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
+        if add_upsample:
+            self.resnet_up = ResnetBlock2D(
+                in_channels=out_channels,
+                out_channels=out_channels,
+                temb_channels=temb_channels,
+                eps=resnet_eps,
+                groups=min(out_channels // 4, 32),
+                groups_out=min(out_channels // 4, 32),
+                dropout=dropout,
+                time_embedding_norm=resnet_time_scale_shift,
+                non_linearity=resnet_act_fn,
+                output_scale_factor=output_scale_factor,
+                pre_norm=resnet_pre_norm,
+                use_in_shortcut=True,
+                up=True,
+                kernel="fir",
+            )
+            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
+            self.skip_norm = torch.nn.GroupNorm(
+                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
+            )
+            self.act = nn.SiLU()
+        else:
+            self.resnet_up = None
+            self.skip_conv = None
+            self.skip_norm = None
+            self.act = None
+
+        self.resolution_idx = resolution_idx
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+        temb: Optional[torch.FloatTensor] = None,
+        skip_sample=None,
+        scale: float = 1.0,
+    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
+        for resnet in self.resnets:
+            # pop res hidden states
+            res_hidden_states = res_hidden_states_tuple[-1]
+            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+            hidden_states = resnet(hidden_states, temb, scale=scale)
+
+        cross_attention_kwargs = {"scale": scale}
+        hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs)
+
+        if skip_sample is not None:
+            skip_sample = self.upsampler(skip_sample)
+        else:
+            skip_sample = 0
+
+        if self.resnet_up is not None:
+            skip_sample_states = self.skip_norm(hidden_states)
+            skip_sample_states = self.act(skip_sample_states)
+            skip_sample_states = self.skip_conv(skip_sample_states)
+
+            skip_sample = skip_sample + skip_sample_states
+
+            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
+
+        return hidden_states, skip_sample
+
+
+class SkipUpBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        prev_output_channel: int,
+        out_channels: int,
+        temb_channels: int,
+        resolution_idx: Optional[int] = None,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_pre_norm: bool = True,
+        output_scale_factor: float = np.sqrt(2.0),
+        add_upsample: bool = True,
+        upsample_padding: int = 1,
+    ):
+        super().__init__()
+        self.resnets = nn.ModuleList([])
+
+        for i in range(num_layers):
+            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+            resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+            self.resnets.append(
+                ResnetBlock2D(
+                    in_channels=resnet_in_channels + res_skip_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
+                    groups_out=min(out_channels // 4, 32),
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                )
+            )
+
+        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
+        if add_upsample:
+            self.resnet_up = ResnetBlock2D(
+                in_channels=out_channels,
+                out_channels=out_channels,
+                temb_channels=temb_channels,
+                eps=resnet_eps,
+                groups=min(out_channels // 4, 32),
+                groups_out=min(out_channels // 4, 32),
+                dropout=dropout,
+                time_embedding_norm=resnet_time_scale_shift,
+                non_linearity=resnet_act_fn,
+                output_scale_factor=output_scale_factor,
+                pre_norm=resnet_pre_norm,
+                use_in_shortcut=True,
+                up=True,
+                kernel="fir",
+            )
+            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
+            self.skip_norm = torch.nn.GroupNorm(
+                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
+            )
+            self.act = nn.SiLU()
+        else:
+            self.resnet_up = None
+            self.skip_conv = None
+            self.skip_norm = None
+            self.act = None
+
+        self.resolution_idx = resolution_idx
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+        temb: Optional[torch.FloatTensor] = None,
+        skip_sample=None,
+        scale: float = 1.0,
+    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
+        for resnet in self.resnets:
+            # pop res hidden states
+            res_hidden_states = res_hidden_states_tuple[-1]
+            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+            hidden_states = resnet(hidden_states, temb, scale=scale)
+
+        if skip_sample is not None:
+            skip_sample = self.upsampler(skip_sample)
+        else:
+            skip_sample = 0
+
+        if self.resnet_up is not None:
+            skip_sample_states = self.skip_norm(hidden_states)
+            skip_sample_states = self.act(skip_sample_states)
+            skip_sample_states = self.skip_conv(skip_sample_states)
+
+            skip_sample = skip_sample + skip_sample_states
+
+            hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
+
+        return hidden_states, skip_sample
+
+
+class ResnetUpsampleBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        prev_output_channel: int,
+        out_channels: int,
+        temb_channels: int,
+        resolution_idx: Optional[int] = None,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        output_scale_factor: float = 1.0,
+        add_upsample: bool = True,
+        skip_time_act: bool = False,
+    ):
+        super().__init__()
+        resnets = []
+
+        for i in range(num_layers):
+            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+            resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=resnet_in_channels + res_skip_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                    skip_time_act=skip_time_act,
+                )
+            )
+
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_upsample:
+            self.upsamplers = nn.ModuleList(
+                [
+                    ResnetBlock2D(
+                        in_channels=out_channels,
+                        out_channels=out_channels,
+                        temb_channels=temb_channels,
+                        eps=resnet_eps,
+                        groups=resnet_groups,
+                        dropout=dropout,
+                        time_embedding_norm=resnet_time_scale_shift,
+                        non_linearity=resnet_act_fn,
+                        output_scale_factor=output_scale_factor,
+                        pre_norm=resnet_pre_norm,
+                        skip_time_act=skip_time_act,
+                        up=True,
+                    )
+                ]
+            )
+        else:
+            self.upsamplers = None
+
+        self.gradient_checkpointing = False
+        self.resolution_idx = resolution_idx
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+        temb: Optional[torch.FloatTensor] = None,
+        upsample_size: Optional[int] = None,
+        scale: float = 1.0,
+    ) -> torch.FloatTensor:
+        for resnet in self.resnets:
+            # pop res hidden states
+            res_hidden_states = res_hidden_states_tuple[-1]
+            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+            if self.training and self.gradient_checkpointing:
+
+                def create_custom_forward(module):
+                    def custom_forward(*inputs):
+                        return module(*inputs)
+
+                    return custom_forward
+
+                if is_torch_version(">=", "1.11.0"):
+                    hidden_states = torch.utils.checkpoint.checkpoint(
+                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+                    )
+                else:
+                    hidden_states = torch.utils.checkpoint.checkpoint(
+                        create_custom_forward(resnet), hidden_states, temb
+                    )
+            else:
+                hidden_states = resnet(hidden_states, temb, scale=scale)
+
+        if self.upsamplers is not None:
+            for upsampler in self.upsamplers:
+                hidden_states = upsampler(hidden_states, temb, scale=scale)
+
+        return hidden_states
+
+
+class SimpleCrossAttnUpBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        prev_output_channel: int,
+        temb_channels: int,
+        resolution_idx: Optional[int] = None,
+        dropout: float = 0.0,
+        num_layers: int = 1,
+        resnet_eps: float = 1e-6,
+        resnet_time_scale_shift: str = "default",
+        resnet_act_fn: str = "swish",
+        resnet_groups: int = 32,
+        resnet_pre_norm: bool = True,
+        attention_head_dim: int = 1,
+        cross_attention_dim: int = 1280,
+        output_scale_factor: float = 1.0,
+        add_upsample: bool = True,
+        skip_time_act: bool = False,
+        only_cross_attention: bool = False,
+        cross_attention_norm: Optional[str] = None,
+    ):
+        super().__init__()
+        resnets = []
+        attentions = []
+
+        self.has_cross_attention = True
+        self.attention_head_dim = attention_head_dim
+
+        self.num_heads = out_channels // self.attention_head_dim
+
+        for i in range(num_layers):
+            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
+            resnet_in_channels = prev_output_channel if i == 0 else out_channels
+
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=resnet_in_channels + res_skip_channels,
+                    out_channels=out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=resnet_groups,
+                    dropout=dropout,
+                    time_embedding_norm=resnet_time_scale_shift,
+                    non_linearity=resnet_act_fn,
+                    output_scale_factor=output_scale_factor,
+                    pre_norm=resnet_pre_norm,
+                    skip_time_act=skip_time_act,
+                )
+            )
+
+            processor = (
+                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
+            )
+
+            attentions.append(
+                Attention(
+                    query_dim=out_channels,
+                    cross_attention_dim=out_channels,
+                    heads=self.num_heads,
+                    dim_head=self.attention_head_dim,
+                    added_kv_proj_dim=cross_attention_dim,
+                    norm_num_groups=resnet_groups,
+                    bias=True,
+                    upcast_softmax=True,
+                    only_cross_attention=only_cross_attention,
+                    cross_attention_norm=cross_attention_norm,
+                    processor=processor,
+                )
+            )
+        self.attentions = nn.ModuleList(attentions)
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_upsample:
+            self.upsamplers = nn.ModuleList(
+                [
+                    ResnetBlock2D(
+                        in_channels=out_channels,
+                        out_channels=out_channels,
+                        temb_channels=temb_channels,
+                        eps=resnet_eps,
+                        groups=resnet_groups,
+                        dropout=dropout,
+                        time_embedding_norm=resnet_time_scale_shift,
+                        non_linearity=resnet_act_fn,
+                        output_scale_factor=output_scale_factor,
+                        pre_norm=resnet_pre_norm,
+                        skip_time_act=skip_time_act,
+                        up=True,
+                    )
+                ]
+            )
+        else:
+            self.upsamplers = None
+
+        self.gradient_checkpointing = False
+        self.resolution_idx = resolution_idx
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+        temb: Optional[torch.FloatTensor] = None,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        upsample_size: Optional[int] = None,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+    ) -> torch.FloatTensor:
+        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+        lora_scale = cross_attention_kwargs.get("scale", 1.0)
+        if attention_mask is None:
+            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
+            mask = None if encoder_hidden_states is None else encoder_attention_mask
+        else:
+            # when attention_mask is defined: we don't even check for encoder_attention_mask.
+            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
+            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
+            #       then we can simplify this whole if/else block to:
+            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
+            mask = attention_mask
+
+        for resnet, attn in zip(self.resnets, self.attentions):
+            # resnet
+            # pop res hidden states
+            res_hidden_states = res_hidden_states_tuple[-1]
+            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
+            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
+
+            if self.training and self.gradient_checkpointing:
+
+                def create_custom_forward(module, return_dict=None):
+                    def custom_forward(*inputs):
+                        if return_dict is not None:
+                            return module(*inputs, return_dict=return_dict)
+                        else:
+                            return module(*inputs)
+
+                    return custom_forward
+
+                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
+                hidden_states = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    attention_mask=mask,
+                    **cross_attention_kwargs,
+                )
+            else:
+                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+
+                hidden_states = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    attention_mask=mask,
+                    **cross_attention_kwargs,
+                )
+
+        if self.upsamplers is not None:
+            for upsampler in self.upsamplers:
+                hidden_states = upsampler(hidden_states, temb, scale=lora_scale)
+
+        return hidden_states
+
+
+class KUpBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        temb_channels: int,
+        resolution_idx: int,
+        dropout: float = 0.0,
+        num_layers: int = 5,
+        resnet_eps: float = 1e-5,
+        resnet_act_fn: str = "gelu",
+        resnet_group_size: Optional[int] = 32,
+        add_upsample: bool = True,
+    ):
+        super().__init__()
+        resnets = []
+        k_in_channels = 2 * out_channels
+        k_out_channels = in_channels
+        num_layers = num_layers - 1
+
+        for i in range(num_layers):
+            in_channels = k_in_channels if i == 0 else out_channels
+            groups = in_channels // resnet_group_size
+            groups_out = out_channels // resnet_group_size
+
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=groups,
+                    groups_out=groups_out,
+                    dropout=dropout,
+                    non_linearity=resnet_act_fn,
+                    time_embedding_norm="ada_group",
+                    conv_shortcut_bias=False,
+                )
+            )
+
+        self.resnets = nn.ModuleList(resnets)
+
+        if add_upsample:
+            self.upsamplers = nn.ModuleList([KUpsample2D()])
+        else:
+            self.upsamplers = None
+
+        self.gradient_checkpointing = False
+        self.resolution_idx = resolution_idx
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+        temb: Optional[torch.FloatTensor] = None,
+        upsample_size: Optional[int] = None,
+        scale: float = 1.0,
+    ) -> torch.FloatTensor:
+        res_hidden_states_tuple = res_hidden_states_tuple[-1]
+        if res_hidden_states_tuple is not None:
+            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)
+
+        for resnet in self.resnets:
+            if self.training and self.gradient_checkpointing:
+
+                def create_custom_forward(module):
+                    def custom_forward(*inputs):
+                        return module(*inputs)
+
+                    return custom_forward
+
+                if is_torch_version(">=", "1.11.0"):
+                    hidden_states = torch.utils.checkpoint.checkpoint(
+                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
+                    )
+                else:
+                    hidden_states = torch.utils.checkpoint.checkpoint(
+                        create_custom_forward(resnet), hidden_states, temb
+                    )
+            else:
+                hidden_states = resnet(hidden_states, temb, scale=scale)
+
+        if self.upsamplers is not None:
+            for upsampler in self.upsamplers:
+                hidden_states = upsampler(hidden_states)
+
+        return hidden_states
+
+
+class KCrossAttnUpBlock2D(nn.Module):
+    def __init__(
+        self,
+        in_channels: int,
+        out_channels: int,
+        temb_channels: int,
+        resolution_idx: int,
+        dropout: float = 0.0,
+        num_layers: int = 4,
+        resnet_eps: float = 1e-5,
+        resnet_act_fn: str = "gelu",
+        resnet_group_size: int = 32,
+        attention_head_dim: int = 1,  # attention dim_head
+        cross_attention_dim: int = 768,
+        add_upsample: bool = True,
+        upcast_attention: bool = False,
+    ):
+        super().__init__()
+        resnets = []
+        attentions = []
+
+        is_first_block = in_channels == out_channels == temb_channels
+        is_middle_block = in_channels != out_channels
+        add_self_attention = True if is_first_block else False
+
+        self.has_cross_attention = True
+        self.attention_head_dim = attention_head_dim
+
+        # in_channels, and out_channels for the block (k-unet)
+        k_in_channels = out_channels if is_first_block else 2 * out_channels
+        k_out_channels = in_channels
+
+        num_layers = num_layers - 1
+
+        for i in range(num_layers):
+            in_channels = k_in_channels if i == 0 else out_channels
+            groups = in_channels // resnet_group_size
+            groups_out = out_channels // resnet_group_size
+
+            if is_middle_block and (i == num_layers - 1):
+                conv_2d_out_channels = k_out_channels
+            else:
+                conv_2d_out_channels = None
+
+            resnets.append(
+                ResnetBlock2D(
+                    in_channels=in_channels,
+                    out_channels=out_channels,
+                    conv_2d_out_channels=conv_2d_out_channels,
+                    temb_channels=temb_channels,
+                    eps=resnet_eps,
+                    groups=groups,
+                    groups_out=groups_out,
+                    dropout=dropout,
+                    non_linearity=resnet_act_fn,
+                    time_embedding_norm="ada_group",
+                    conv_shortcut_bias=False,
+                )
+            )
+            attentions.append(
+                KAttentionBlock(
+                    k_out_channels if (i == num_layers - 1) else out_channels,
+                    k_out_channels // attention_head_dim
+                    if (i == num_layers - 1)
+                    else out_channels // attention_head_dim,
+                    attention_head_dim,
+                    cross_attention_dim=cross_attention_dim,
+                    temb_channels=temb_channels,
+                    attention_bias=True,
+                    add_self_attention=add_self_attention,
+                    cross_attention_norm="layer_norm",
+                    upcast_attention=upcast_attention,
+                )
+            )
+
+        self.resnets = nn.ModuleList(resnets)
+        self.attentions = nn.ModuleList(attentions)
+
+        if add_upsample:
+            self.upsamplers = nn.ModuleList([KUpsample2D()])
+        else:
+            self.upsamplers = None
+
+        self.gradient_checkpointing = False
+        self.resolution_idx = resolution_idx
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
+        temb: Optional[torch.FloatTensor] = None,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        upsample_size: Optional[int] = None,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+    ) -> torch.FloatTensor:
+        res_hidden_states_tuple = res_hidden_states_tuple[-1]
+        if res_hidden_states_tuple is not None:
+            hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)
+
+        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
+        for resnet, attn in zip(self.resnets, self.attentions):
+            if self.training and self.gradient_checkpointing:
+
+                def create_custom_forward(module, return_dict=None):
+                    def custom_forward(*inputs):
+                        if return_dict is not None:
+                            return module(*inputs, return_dict=return_dict)
+                        else:
+                            return module(*inputs)
+
+                    return custom_forward
+
+                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
+                hidden_states = torch.utils.checkpoint.checkpoint(
+                    create_custom_forward(resnet),
+                    hidden_states,
+                    temb,
+                    **ckpt_kwargs,
+                )
+                hidden_states = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    emb=temb,
+                    attention_mask=attention_mask,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    encoder_attention_mask=encoder_attention_mask,
+                )
+            else:
+                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
+                hidden_states = attn(
+                    hidden_states,
+                    encoder_hidden_states=encoder_hidden_states,
+                    emb=temb,
+                    attention_mask=attention_mask,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    encoder_attention_mask=encoder_attention_mask,
+                )
+
+        if self.upsamplers is not None:
+            for upsampler in self.upsamplers:
+                hidden_states = upsampler(hidden_states)
+
+        return hidden_states
+
+
+# can potentially later be renamed to `No-feed-forward` attention
+class KAttentionBlock(nn.Module):
+    r"""
+    A basic Transformer block.
+
+    Parameters:
+        dim (`int`): The number of channels in the input and output.
+        num_attention_heads (`int`): The number of heads to use for multi-head attention.
+        attention_head_dim (`int`): The number of channels in each head.
+        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
+        attention_bias (`bool`, *optional*, defaults to `False`):
+            Configure if the attention layers should contain a bias parameter.
+        upcast_attention (`bool`, *optional*, defaults to `False`):
+            Set to `True` to upcast the attention computation to `float32`.
+        temb_channels (`int`, *optional*, defaults to 768):
+            The number of channels in the token embedding.
+        add_self_attention (`bool`, *optional*, defaults to `False`):
+            Set to `True` to add self-attention to the block.
+        cross_attention_norm (`str`, *optional*, defaults to `None`):
+            The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
+        group_size (`int`, *optional*, defaults to 32):
+            The number of groups to separate the channels into for group normalization.
+    """
+
+    def __init__(
+        self,
+        dim: int,
+        num_attention_heads: int,
+        attention_head_dim: int,
+        dropout: float = 0.0,
+        cross_attention_dim: Optional[int] = None,
+        attention_bias: bool = False,
+        upcast_attention: bool = False,
+        temb_channels: int = 768,  # for ada_group_norm
+        add_self_attention: bool = False,
+        cross_attention_norm: Optional[str] = None,
+        group_size: int = 32,
+    ):
+        super().__init__()
+        self.add_self_attention = add_self_attention
+
+        # 1. Self-Attn
+        if add_self_attention:
+            self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
+            self.attn1 = Attention(
+                query_dim=dim,
+                heads=num_attention_heads,
+                dim_head=attention_head_dim,
+                dropout=dropout,
+                bias=attention_bias,
+                cross_attention_dim=None,
+                cross_attention_norm=None,
+            )
+
+        # 2. Cross-Attn
+        self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
+        self.attn2 = Attention(
+            query_dim=dim,
+            cross_attention_dim=cross_attention_dim,
+            heads=num_attention_heads,
+            dim_head=attention_head_dim,
+            dropout=dropout,
+            bias=attention_bias,
+            upcast_attention=upcast_attention,
+            cross_attention_norm=cross_attention_norm,
+        )
+
+    def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
+        return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)
+
+    def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
+        return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)
+
+    def forward(
+        self,
+        hidden_states: torch.FloatTensor,
+        encoder_hidden_states: Optional[torch.FloatTensor] = None,
+        # TODO: mark emb as non-optional (self.norm2 requires it).
+        #       requires assessing impact of change to positional param interface.
+        emb: Optional[torch.FloatTensor] = None,
+        attention_mask: Optional[torch.FloatTensor] = None,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        encoder_attention_mask: Optional[torch.FloatTensor] = None,
+    ) -> torch.FloatTensor:
+        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+        # 1. Self-Attention
+        if self.add_self_attention:
+            norm_hidden_states = self.norm1(hidden_states, emb)
+
+            height, weight = norm_hidden_states.shape[2:]
+            norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
+
+            attn_output = self.attn1(
+                norm_hidden_states,
+                encoder_hidden_states=None,
+                attention_mask=attention_mask,
+                **cross_attention_kwargs,
+            )
+            attn_output = self._to_4d(attn_output, height, weight)
+
+            hidden_states = attn_output + hidden_states
+
+        # 2. Cross-Attention/None
+        norm_hidden_states = self.norm2(hidden_states, emb)
+
+        height, weight = norm_hidden_states.shape[2:]
+        norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
+        attn_output = self.attn2(
+            norm_hidden_states,
+            encoder_hidden_states=encoder_hidden_states,
+            attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
+            **cross_attention_kwargs,
+        )
+        attn_output = self._to_4d(attn_output, height, weight)
+
+        hidden_states = attn_output + hidden_states
+
+        return hidden_states