tommasobaldi's picture
working on text splitting
d09a554
raw
history blame
5.4 kB
import html
import os
from typing import AnyStr
import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import streamlit as st
import validators
from transformers import pipeline
from validators import ValidationFailure
def main() -> None:
nltk.download("punkt")
# header
st.title(":bookmark_tabs: Terms Of Service Summarizer :bookmark_tabs:")
st.markdown("The app aims to extract the main information from Terms Of Conditions, which are often too long and "
"difficult to understand. ")
st.markdown("To test it just copy-paste a Terms Of Conditions in the textarea or select one of the examples that "
"we have prepared for you, then you will see the summary represented as the most important sentences.")
st.markdown("If you want more info in how we built our NLP algorithm check the documentation in the following "
"GitHub repo: :point_right: https://github.com/balditommaso/TermsOfServiceSummarization :point_left:")
st.markdown(":skull_and_crossbones: NOTE :skull_and_crossbones::")
st.markdown("the App is still under development and we do not give any guarantee on the quality of the summaries, "
"so we suggest a careful reading of the document.")
@st.cache(allow_output_mutation=True, suppress_st_warning=True, show_spinner=False)
def create_pipeline():
with st.spinner("Loading the model..."):
tos_pipeline = pipeline(task="summarization",
model="ML-unipi/bart-large-tos",
tokenizer="ML-unipi/bart-large-tos"
)
return tos_pipeline
def display_summary(summary_sentences: list) -> None:
st.subheader("Summary :male-detective:")
for sentence in summary_sentences:
st.markdown(f"<li>{sentence['summary_text']}</li>", unsafe_allow_html=True)
def get_list_files() -> list:
names = []
for file in os.listdir("./samples/"):
if file.endswith(".txt"):
names.append(file.replace(".txt", ""))
return names
def fetch_file_content(filename: str) -> AnyStr:
with open(f"./samples/{filename.lower()}.txt", "r") as file:
text = file.read()
return text
if "target_text" not in st.session_state:
st.session_state.target_text = ""
if "sentence_lenght" not in st.session_state:
st.session_state.sentence_length = 15
if "sample_choice" not in st.session_state:
st.session_state.sentence_length = ""
st.header("Input")
# sentences_length = st.number_input(
# label="How many senetences to be extracted:",
# min_value=5,
# max_value=15,
# step=1,
# value=st.session_state.sentence_length
# )
sample_choice = st.selectbox(
label="Select a sample:",
options=get_list_files()
)
st.session_state.target_text = fetch_file_content(sample_choice)
target_text_input = st.text_area(
value=st.session_state.target_text,
label="Paste your own Term Of Service:",
height=240
)
summarize_button = st.button(label="Try it!")
# @st.cache(suppress_st_warning=True,
# show_spinner=False,
# allow_output_mutation=True,
# hash_funcs={"torch.nn.parameter.Parameter": lambda _: None,
# "tokenizers.Tokenizer": lambda _: None,
# "tokenizers.AddedToken": lambda _: None,
# }
# )
# def summary_from_cache(summary_sentence: tuple) -> tuple:
# with st.spinner("Summarizing in progress..."):
# return tuple(summarizer.abstractive_summary(list(summary_sentence)))
def join_sentences(sentences: list) -> str:
return " ".join([sentence for sentence in sentences])
def split_sentences_by_token_length(sentences: list, split_token_length: int) -> list:
accumulated_lists = []
result_list = []
cumulative_token_length = 0
for sentence in sentences:
token_list = [token for token in nltk.word_tokenize(sentence) if token not in ['.']]
token_length = len(token_list)
if token_length + cumulative_token_length > split_token_length and result_list:
accumulated_lists.append(join_sentences(result_list))
result_list = [sentence]
cumulative_token_length = token_length
else:
result_list.append(sentence)
cumulative_token_length += token_length
if result_list:
accumulated_lists.append(join_sentences(result_list))
return accumulated_lists
pipe = create_pipeline()
if summarize_button:
if target_text_input is not "":
with st.spinner("Summarizing in progress..."):
sentences = split_sentences_by_token_length(nltk.sent_tokenize(target_text_input), 600)
for sentence in sentences:
summary_sentences = pipe(sentence)
display_summary(summary_sentences["summary_text"].split("."))
#output = pipe(sentence)
#st.markdown(output["summary_text"])
if __name__ == "__main__":
main()