Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,1007 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import List, Union, Tuple
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import ezdxf.units
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from torchvision import transforms
|
| 9 |
+
from ultralytics import YOLOWorld, YOLO
|
| 10 |
+
from ultralytics.engine.results import Results
|
| 11 |
+
from ultralytics.utils.plotting import save_one_box
|
| 12 |
+
from transformers import AutoModelForImageSegmentation
|
| 13 |
+
import cv2
|
| 14 |
+
import ezdxf
|
| 15 |
+
import gradio as gr
|
| 16 |
+
import gc
|
| 17 |
+
from scalingtestupdated import calculate_scaling_factor
|
| 18 |
+
from scipy.interpolate import splprep, splev
|
| 19 |
+
from scipy.ndimage import gaussian_filter1d
|
| 20 |
+
import json
|
| 21 |
+
import time
|
| 22 |
+
import signal
|
| 23 |
+
from shapely.ops import unary_union
|
| 24 |
+
from shapely.geometry import MultiPolygon, GeometryCollection, Polygon, Point
|
| 25 |
+
from u2netp import U2NETP
|
| 26 |
+
import logging
|
| 27 |
+
import shutil
|
| 28 |
+
|
| 29 |
+
# Initialize logging
|
| 30 |
+
logging.basicConfig(level=logging.INFO)
|
| 31 |
+
logger = logging.getLogger(__name__)
|
| 32 |
+
|
| 33 |
+
# Create cache directory for models
|
| 34 |
+
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
|
| 35 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 36 |
+
|
| 37 |
+
# Paper size configurations (in mm)
|
| 38 |
+
PAPER_SIZES = {
|
| 39 |
+
"A4": {"width": 210, "height": 297},
|
| 40 |
+
"A3": {"width": 297, "height": 420},
|
| 41 |
+
"US Letter": {"width": 215.9, "height": 279.4}
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
# Custom Exception Classes
|
| 45 |
+
class TimeoutReachedError(Exception):
|
| 46 |
+
pass
|
| 47 |
+
|
| 48 |
+
class BoundaryOverlapError(Exception):
|
| 49 |
+
pass
|
| 50 |
+
|
| 51 |
+
class TextOverlapError(Exception):
|
| 52 |
+
pass
|
| 53 |
+
|
| 54 |
+
class PaperNotDetectedError(Exception):
|
| 55 |
+
"""Raised when the paper cannot be detected in the image"""
|
| 56 |
+
pass
|
| 57 |
+
|
| 58 |
+
class MultipleObjectsError(Exception):
|
| 59 |
+
"""Raised when multiple objects are detected on the paper"""
|
| 60 |
+
def __init__(self, message="Multiple objects detected. Please place only a single object on the paper."):
|
| 61 |
+
super().__init__(message)
|
| 62 |
+
|
| 63 |
+
class NoObjectDetectedError(Exception):
|
| 64 |
+
"""Raised when no object is detected on the paper"""
|
| 65 |
+
def __init__(self, message="No object detected on the paper. Please ensure an object is placed on the paper."):
|
| 66 |
+
super().__init__(message)
|
| 67 |
+
|
| 68 |
+
class FingerCutOverlapError(Exception):
|
| 69 |
+
"""Raised when finger cuts overlap with existing geometry"""
|
| 70 |
+
def __init__(self, message="There was an overlap with fingercuts... Please try again to generate dxf."):
|
| 71 |
+
super().__init__(message)
|
| 72 |
+
|
| 73 |
+
# Global model variables for lazy loading
|
| 74 |
+
paper_detector_global = None
|
| 75 |
+
u2net_global = None
|
| 76 |
+
birefnet = None
|
| 77 |
+
|
| 78 |
+
# Model paths
|
| 79 |
+
paper_model_path = os.path.join(CACHE_DIR, "paper_detector.pt") # You'll need to train/provide this
|
| 80 |
+
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
|
| 81 |
+
|
| 82 |
+
# Device configuration
|
| 83 |
+
device = "cpu"
|
| 84 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
| 85 |
+
|
| 86 |
+
def ensure_model_files():
|
| 87 |
+
"""Ensure model files are available in cache directory"""
|
| 88 |
+
if not os.path.exists(paper_model_path):
|
| 89 |
+
if os.path.exists("paper_detector.pt"):
|
| 90 |
+
shutil.copy("paper_detector.pt", paper_model_path)
|
| 91 |
+
else:
|
| 92 |
+
logger.warning("paper_detector.pt model file not found - using fallback detection")
|
| 93 |
+
|
| 94 |
+
if not os.path.exists(u2net_model_path):
|
| 95 |
+
if os.path.exists("u2netp.pth"):
|
| 96 |
+
shutil.copy("u2netp.pth", u2net_model_path)
|
| 97 |
+
else:
|
| 98 |
+
raise FileNotFoundError("u2netp.pth model file not found")
|
| 99 |
+
|
| 100 |
+
ensure_model_files()
|
| 101 |
+
|
| 102 |
+
# Lazy loading functions
|
| 103 |
+
def get_paper_detector():
|
| 104 |
+
"""Lazy load paper detector model"""
|
| 105 |
+
global paper_detector_global
|
| 106 |
+
if paper_detector_global is None:
|
| 107 |
+
logger.info("Loading paper detector model...")
|
| 108 |
+
if os.path.exists(paper_model_path):
|
| 109 |
+
paper_detector_global = YOLO(paper_model_path)
|
| 110 |
+
else:
|
| 111 |
+
# Fallback to generic object detection for paper-like rectangles
|
| 112 |
+
logger.warning("Using fallback paper detection")
|
| 113 |
+
paper_detector_global = None
|
| 114 |
+
logger.info("Paper detector loaded successfully")
|
| 115 |
+
return paper_detector_global
|
| 116 |
+
|
| 117 |
+
def get_u2net():
|
| 118 |
+
"""Lazy load U2NETP model"""
|
| 119 |
+
global u2net_global
|
| 120 |
+
if u2net_global is None:
|
| 121 |
+
logger.info("Loading U2NETP model...")
|
| 122 |
+
u2net_global = U2NETP(3, 1)
|
| 123 |
+
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
|
| 124 |
+
u2net_global.to(device)
|
| 125 |
+
u2net_global.eval()
|
| 126 |
+
logger.info("U2NETP model loaded successfully")
|
| 127 |
+
return u2net_global
|
| 128 |
+
|
| 129 |
+
def load_birefnet_model():
|
| 130 |
+
"""Load BiRefNet model from HuggingFace"""
|
| 131 |
+
return AutoModelForImageSegmentation.from_pretrained(
|
| 132 |
+
'ZhengPeng7/BiRefNet',
|
| 133 |
+
trust_remote_code=True
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
def get_birefnet():
|
| 137 |
+
"""Lazy load BiRefNet model"""
|
| 138 |
+
global birefnet
|
| 139 |
+
if birefnet is None:
|
| 140 |
+
logger.info("Loading BiRefNet model...")
|
| 141 |
+
birefnet = load_birefnet_model()
|
| 142 |
+
birefnet.to(device)
|
| 143 |
+
birefnet.eval()
|
| 144 |
+
logger.info("BiRefNet model loaded successfully")
|
| 145 |
+
return birefnet
|
| 146 |
+
|
| 147 |
+
def detect_paper_contour(image: np.ndarray) -> Tuple[np.ndarray, float]:
|
| 148 |
+
"""
|
| 149 |
+
Detect paper in the image using contour detection as fallback
|
| 150 |
+
Returns the paper contour and estimated scaling factor
|
| 151 |
+
"""
|
| 152 |
+
# Convert to grayscale
|
| 153 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
|
| 154 |
+
|
| 155 |
+
# Apply Gaussian blur
|
| 156 |
+
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
| 157 |
+
|
| 158 |
+
# Edge detection
|
| 159 |
+
edges = cv2.Canny(blurred, 50, 150)
|
| 160 |
+
|
| 161 |
+
# Find contours
|
| 162 |
+
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 163 |
+
|
| 164 |
+
# Filter contours by area and aspect ratio to find paper-like rectangles
|
| 165 |
+
paper_contours = []
|
| 166 |
+
min_area = (image.shape[0] * image.shape[1]) * 0.1 # At least 10% of image
|
| 167 |
+
|
| 168 |
+
for contour in contours:
|
| 169 |
+
area = cv2.contourArea(contour)
|
| 170 |
+
if area > min_area:
|
| 171 |
+
# Approximate contour to polygon
|
| 172 |
+
epsilon = 0.02 * cv2.arcLength(contour, True)
|
| 173 |
+
approx = cv2.approxPolyDP(contour, epsilon, True)
|
| 174 |
+
|
| 175 |
+
# Check if it's roughly rectangular (4 corners)
|
| 176 |
+
if len(approx) >= 4:
|
| 177 |
+
# Calculate bounding rectangle
|
| 178 |
+
rect = cv2.boundingRect(approx)
|
| 179 |
+
aspect_ratio = rect[2] / rect[3] # width / height
|
| 180 |
+
|
| 181 |
+
# Check if aspect ratio matches common paper ratios
|
| 182 |
+
# A4: 1.414, A3: 1.414, US Letter: 1.294
|
| 183 |
+
if 0.7 < aspect_ratio < 1.8: # Allow some tolerance
|
| 184 |
+
paper_contours.append((contour, area, aspect_ratio))
|
| 185 |
+
|
| 186 |
+
if not paper_contours:
|
| 187 |
+
raise PaperNotDetectedError("Could not detect paper in the image")
|
| 188 |
+
|
| 189 |
+
# Select the largest paper-like contour
|
| 190 |
+
paper_contours.sort(key=lambda x: x[1], reverse=True)
|
| 191 |
+
best_contour = paper_contours[0][0]
|
| 192 |
+
|
| 193 |
+
return best_contour, 0.0 # Return 0.0 as placeholder scaling factor
|
| 194 |
+
|
| 195 |
+
def detect_paper_bounds(image: np.ndarray, paper_size: str) -> Tuple[np.ndarray, float]:
|
| 196 |
+
"""
|
| 197 |
+
Detect paper bounds in the image and calculate scaling factor
|
| 198 |
+
"""
|
| 199 |
+
try:
|
| 200 |
+
paper_detector = get_paper_detector()
|
| 201 |
+
|
| 202 |
+
if paper_detector is not None:
|
| 203 |
+
# Use trained model if available
|
| 204 |
+
results = paper_detector.predict(image, conf=0.5)
|
| 205 |
+
if not results or len(results) == 0 or len(results[0].boxes) == 0:
|
| 206 |
+
logger.warning("Model detection failed, using fallback contour detection")
|
| 207 |
+
return detect_paper_contour(image)
|
| 208 |
+
|
| 209 |
+
# Get the largest detected paper
|
| 210 |
+
boxes = results[0].cpu().boxes.xyxy
|
| 211 |
+
largest_box = None
|
| 212 |
+
max_area = 0
|
| 213 |
+
|
| 214 |
+
for box in boxes:
|
| 215 |
+
x_min, y_min, x_max, y_max = box
|
| 216 |
+
area = (x_max - x_min) * (y_max - y_min)
|
| 217 |
+
if area > max_area:
|
| 218 |
+
max_area = area
|
| 219 |
+
largest_box = box
|
| 220 |
+
|
| 221 |
+
if largest_box is None:
|
| 222 |
+
raise PaperNotDetectedError("No paper detected by model")
|
| 223 |
+
|
| 224 |
+
# Convert box to contour-like format
|
| 225 |
+
x_min, y_min, x_max, y_max = map(int, largest_box)
|
| 226 |
+
paper_contour = np.array([
|
| 227 |
+
[[x_min, y_min]],
|
| 228 |
+
[[x_max, y_min]],
|
| 229 |
+
[[x_max, y_max]],
|
| 230 |
+
[[x_min, y_max]]
|
| 231 |
+
])
|
| 232 |
+
|
| 233 |
+
else:
|
| 234 |
+
# Use fallback contour detection
|
| 235 |
+
paper_contour, _ = detect_paper_contour(image)
|
| 236 |
+
|
| 237 |
+
# Calculate scaling factor based on paper size
|
| 238 |
+
scaling_factor = calculate_paper_scaling_factor(paper_contour, paper_size)
|
| 239 |
+
|
| 240 |
+
return paper_contour, scaling_factor
|
| 241 |
+
|
| 242 |
+
except Exception as e:
|
| 243 |
+
logger.error(f"Error in paper detection: {e}")
|
| 244 |
+
raise PaperNotDetectedError(f"Failed to detect paper: {str(e)}")
|
| 245 |
+
|
| 246 |
+
def calculate_paper_scaling_factor(paper_contour: np.ndarray, paper_size: str) -> float:
|
| 247 |
+
"""
|
| 248 |
+
Calculate scaling factor based on detected paper dimensions
|
| 249 |
+
"""
|
| 250 |
+
# Get paper dimensions
|
| 251 |
+
paper_dims = PAPER_SIZES[paper_size]
|
| 252 |
+
expected_width_mm = paper_dims["width"]
|
| 253 |
+
expected_height_mm = paper_dims["height"]
|
| 254 |
+
|
| 255 |
+
# Calculate bounding rectangle of paper contour
|
| 256 |
+
rect = cv2.boundingRect(paper_contour)
|
| 257 |
+
detected_width_px = rect[2]
|
| 258 |
+
detected_height_px = rect[3]
|
| 259 |
+
|
| 260 |
+
# Calculate scaling factors for both dimensions
|
| 261 |
+
scale_x = expected_width_mm / detected_width_px
|
| 262 |
+
scale_y = expected_height_mm / detected_height_px
|
| 263 |
+
|
| 264 |
+
# Use average of both scales
|
| 265 |
+
scaling_factor = (scale_x + scale_y) / 2
|
| 266 |
+
|
| 267 |
+
logger.info(f"Paper detection: {detected_width_px}x{detected_height_px} px -> {expected_width_mm}x{expected_height_mm} mm")
|
| 268 |
+
logger.info(f"Calculated scaling factor: {scaling_factor:.4f} mm/px")
|
| 269 |
+
|
| 270 |
+
return scaling_factor
|
| 271 |
+
|
| 272 |
+
def validate_single_object(mask: np.ndarray, paper_contour: np.ndarray) -> None:
|
| 273 |
+
"""
|
| 274 |
+
Validate that only a single object is present on the paper
|
| 275 |
+
"""
|
| 276 |
+
# Create a mask for the paper area
|
| 277 |
+
paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
|
| 278 |
+
cv2.fillPoly(paper_mask, [paper_contour], 255)
|
| 279 |
+
|
| 280 |
+
# Apply paper mask to object mask
|
| 281 |
+
masked_objects = cv2.bitwise_and(mask, paper_mask)
|
| 282 |
+
|
| 283 |
+
# Find contours of objects within paper bounds
|
| 284 |
+
contours, _ = cv2.findContours(masked_objects, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 285 |
+
|
| 286 |
+
# Filter out very small contours (noise)
|
| 287 |
+
min_area = 1000 # Minimum area threshold
|
| 288 |
+
significant_contours = [c for c in contours if cv2.contourArea(c) > min_area]
|
| 289 |
+
|
| 290 |
+
if len(significant_contours) == 0:
|
| 291 |
+
raise NoObjectDetectedError()
|
| 292 |
+
elif len(significant_contours) > 1:
|
| 293 |
+
raise MultipleObjectsError()
|
| 294 |
+
|
| 295 |
+
logger.info(f"Single object validated: {len(significant_contours)} significant contour(s) found")
|
| 296 |
+
|
| 297 |
+
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
|
| 298 |
+
"""Remove background using U2NETP model"""
|
| 299 |
+
try:
|
| 300 |
+
u2net_model = get_u2net()
|
| 301 |
+
|
| 302 |
+
image_pil = Image.fromarray(image)
|
| 303 |
+
transform_u2netp = transforms.Compose([
|
| 304 |
+
transforms.Resize((320, 320)),
|
| 305 |
+
transforms.ToTensor(),
|
| 306 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 307 |
+
])
|
| 308 |
+
|
| 309 |
+
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to(device)
|
| 310 |
+
|
| 311 |
+
with torch.no_grad():
|
| 312 |
+
outputs = u2net_model(input_tensor)
|
| 313 |
+
|
| 314 |
+
pred = outputs[0]
|
| 315 |
+
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
|
| 316 |
+
pred_np = pred.squeeze().cpu().numpy()
|
| 317 |
+
pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
|
| 318 |
+
pred_np = (pred_np * 255).astype(np.uint8)
|
| 319 |
+
|
| 320 |
+
return pred_np
|
| 321 |
+
except Exception as e:
|
| 322 |
+
logger.error(f"Error in U2NETP background removal: {e}")
|
| 323 |
+
raise
|
| 324 |
+
|
| 325 |
+
def remove_bg(image: np.ndarray) -> np.ndarray:
|
| 326 |
+
"""Remove background using BiRefNet model for main objects"""
|
| 327 |
+
try:
|
| 328 |
+
birefnet_model = get_birefnet()
|
| 329 |
+
|
| 330 |
+
transform_image = transforms.Compose([
|
| 331 |
+
transforms.Resize((1024, 1024)),
|
| 332 |
+
transforms.ToTensor(),
|
| 333 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 334 |
+
])
|
| 335 |
+
|
| 336 |
+
image_pil = Image.fromarray(image)
|
| 337 |
+
input_images = transform_image(image_pil).unsqueeze(0).to(device)
|
| 338 |
+
|
| 339 |
+
with torch.no_grad():
|
| 340 |
+
preds = birefnet_model(input_images)[-1].sigmoid().cpu()
|
| 341 |
+
pred = preds[0].squeeze()
|
| 342 |
+
|
| 343 |
+
pred_pil = transforms.ToPILImage()(pred)
|
| 344 |
+
|
| 345 |
+
scale_ratio = 1024 / max(image_pil.size)
|
| 346 |
+
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
|
| 347 |
+
|
| 348 |
+
return np.array(pred_pil.resize(scaled_size))
|
| 349 |
+
except Exception as e:
|
| 350 |
+
logger.error(f"Error in BiRefNet background removal: {e}")
|
| 351 |
+
raise
|
| 352 |
+
|
| 353 |
+
def exclude_paper_area(mask: np.ndarray, paper_contour: np.ndarray, expansion_factor: float = 1.1) -> np.ndarray:
|
| 354 |
+
"""
|
| 355 |
+
Remove paper area from the mask to focus only on objects
|
| 356 |
+
"""
|
| 357 |
+
# Create paper mask with slight expansion to ensure complete removal
|
| 358 |
+
paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
|
| 359 |
+
|
| 360 |
+
# Expand paper contour slightly
|
| 361 |
+
epsilon = expansion_factor * cv2.arcLength(paper_contour, True)
|
| 362 |
+
expanded_contour = cv2.approxPolyDP(paper_contour, epsilon, True)
|
| 363 |
+
|
| 364 |
+
cv2.fillPoly(paper_mask, [expanded_contour], 255)
|
| 365 |
+
|
| 366 |
+
# Invert paper mask and apply to object mask
|
| 367 |
+
paper_mask_inv = cv2.bitwise_not(paper_mask)
|
| 368 |
+
result_mask = cv2.bitwise_and(mask, paper_mask_inv)
|
| 369 |
+
|
| 370 |
+
return result_mask
|
| 371 |
+
|
| 372 |
+
def resample_contour(contour, edge_radius_px: int = 0):
|
| 373 |
+
"""Resample contour with radius-aware smoothing and periodic handling."""
|
| 374 |
+
logger.info(f"Starting resample_contour with contour of shape {contour.shape}")
|
| 375 |
+
|
| 376 |
+
num_points = 1500
|
| 377 |
+
sigma = max(2, int(edge_radius_px) // 4)
|
| 378 |
+
|
| 379 |
+
if len(contour) < 4:
|
| 380 |
+
error_msg = f"Contour must have at least 4 points, but has {len(contour)} points."
|
| 381 |
+
logger.error(error_msg)
|
| 382 |
+
raise ValueError(error_msg)
|
| 383 |
+
|
| 384 |
+
try:
|
| 385 |
+
contour = contour[:, 0, :]
|
| 386 |
+
logger.debug(f"Reshaped contour to shape {contour.shape}")
|
| 387 |
+
|
| 388 |
+
if not np.array_equal(contour[0], contour[-1]):
|
| 389 |
+
contour = np.vstack([contour, contour[0]])
|
| 390 |
+
|
| 391 |
+
tck, u = splprep(contour.T, u=None, s=0, per=True)
|
| 392 |
+
|
| 393 |
+
u_new = np.linspace(u.min(), u.max(), num_points)
|
| 394 |
+
x_new, y_new = splev(u_new, tck, der=0)
|
| 395 |
+
|
| 396 |
+
if sigma > 0:
|
| 397 |
+
x_new = gaussian_filter1d(x_new, sigma=sigma, mode='wrap')
|
| 398 |
+
y_new = gaussian_filter1d(y_new, sigma=sigma, mode='wrap')
|
| 399 |
+
|
| 400 |
+
x_new[-1] = x_new[0]
|
| 401 |
+
y_new[-1] = y_new[0]
|
| 402 |
+
|
| 403 |
+
result = np.array([x_new, y_new]).T
|
| 404 |
+
logger.info(f"Completed resample_contour with result shape {result.shape}")
|
| 405 |
+
return result
|
| 406 |
+
|
| 407 |
+
except Exception as e:
|
| 408 |
+
logger.error(f"Error in resample_contour: {e}")
|
| 409 |
+
raise
|
| 410 |
+
|
| 411 |
+
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
|
| 412 |
+
"""Save contours as DXF splines with optional finger cuts"""
|
| 413 |
+
doc = ezdxf.new(units=ezdxf.units.MM)
|
| 414 |
+
doc.header["$INSUNITS"] = ezdxf.units.MM
|
| 415 |
+
msp = doc.modelspace()
|
| 416 |
+
final_polygons_inch = []
|
| 417 |
+
finger_centers = []
|
| 418 |
+
original_polygons = []
|
| 419 |
+
|
| 420 |
+
# Scale correction factor
|
| 421 |
+
scale_correction = 1.079
|
| 422 |
+
|
| 423 |
+
for contour in inflated_contours:
|
| 424 |
+
try:
|
| 425 |
+
resampled_contour = resample_contour(contour)
|
| 426 |
+
|
| 427 |
+
points_inch = [(x * scaling_factor, (height - y) * scaling_factor)
|
| 428 |
+
for x, y in resampled_contour]
|
| 429 |
+
|
| 430 |
+
if len(points_inch) < 3:
|
| 431 |
+
continue
|
| 432 |
+
|
| 433 |
+
tool_polygon = build_tool_polygon(points_inch)
|
| 434 |
+
original_polygons.append(tool_polygon)
|
| 435 |
+
|
| 436 |
+
if finger_clearance:
|
| 437 |
+
try:
|
| 438 |
+
tool_polygon, center = place_finger_cut_adjusted(
|
| 439 |
+
tool_polygon, points_inch, finger_centers, final_polygons_inch
|
| 440 |
+
)
|
| 441 |
+
except FingerCutOverlapError:
|
| 442 |
+
tool_polygon = original_polygons[-1]
|
| 443 |
+
|
| 444 |
+
exterior_coords = polygon_to_exterior_coords(tool_polygon)
|
| 445 |
+
if len(exterior_coords) < 3:
|
| 446 |
+
continue
|
| 447 |
+
|
| 448 |
+
# Apply scale correction
|
| 449 |
+
corrected_coords = [(x * scale_correction, y * scale_correction) for x, y in exterior_coords]
|
| 450 |
+
|
| 451 |
+
msp.add_spline(corrected_coords, degree=3, dxfattribs={"layer": "TOOLS"})
|
| 452 |
+
final_polygons_inch.append(tool_polygon)
|
| 453 |
+
|
| 454 |
+
except ValueError as e:
|
| 455 |
+
logger.warning(f"Skipping contour: {e}")
|
| 456 |
+
|
| 457 |
+
dxf_filepath = os.path.join("./outputs", "out.dxf")
|
| 458 |
+
doc.saveas(dxf_filepath)
|
| 459 |
+
return dxf_filepath, final_polygons_inch, original_polygons
|
| 460 |
+
|
| 461 |
+
def build_tool_polygon(points_inch):
|
| 462 |
+
"""Build a polygon from inch-converted points"""
|
| 463 |
+
return Polygon(points_inch)
|
| 464 |
+
|
| 465 |
+
def polygon_to_exterior_coords(poly):
|
| 466 |
+
"""Extract exterior coordinates from polygon"""
|
| 467 |
+
logger.info(f"Starting polygon_to_exterior_coords with input geometry type: {poly.geom_type}")
|
| 468 |
+
|
| 469 |
+
try:
|
| 470 |
+
if poly.geom_type == "GeometryCollection" or poly.geom_type == "MultiPolygon":
|
| 471 |
+
logger.debug(f"Performing unary_union on {poly.geom_type}")
|
| 472 |
+
unified = unary_union(poly)
|
| 473 |
+
if unified.is_empty:
|
| 474 |
+
logger.warning("unary_union produced an empty geometry; returning empty list")
|
| 475 |
+
return []
|
| 476 |
+
|
| 477 |
+
if unified.geom_type == "GeometryCollection" or unified.geom_type == "MultiPolygon":
|
| 478 |
+
largest = None
|
| 479 |
+
max_area = 0.0
|
| 480 |
+
for g in getattr(unified, "geoms", []):
|
| 481 |
+
if hasattr(g, "area") and g.area > max_area and hasattr(g, "exterior"):
|
| 482 |
+
max_area = g.area
|
| 483 |
+
largest = g
|
| 484 |
+
if largest is None:
|
| 485 |
+
logger.warning("No valid Polygon found in unified geometry; returning empty list")
|
| 486 |
+
return []
|
| 487 |
+
poly = largest
|
| 488 |
+
else:
|
| 489 |
+
poly = unified
|
| 490 |
+
|
| 491 |
+
if not hasattr(poly, "exterior") or poly.exterior is None:
|
| 492 |
+
logger.warning("Input geometry has no exterior ring; returning empty list")
|
| 493 |
+
return []
|
| 494 |
+
|
| 495 |
+
raw_coords = list(poly.exterior.coords)
|
| 496 |
+
total = len(raw_coords)
|
| 497 |
+
logger.info(f"Extracted {total} raw exterior coordinates")
|
| 498 |
+
|
| 499 |
+
if total == 0:
|
| 500 |
+
return []
|
| 501 |
+
|
| 502 |
+
# Subsample coordinates to at most 100 points
|
| 503 |
+
max_pts = 100
|
| 504 |
+
if total > max_pts:
|
| 505 |
+
step = total // max_pts
|
| 506 |
+
sampled = [raw_coords[i] for i in range(0, total, step)]
|
| 507 |
+
if sampled[-1] != raw_coords[-1]:
|
| 508 |
+
sampled.append(raw_coords[-1])
|
| 509 |
+
logger.info(f"Downsampled perimeter from {total} to {len(sampled)} points")
|
| 510 |
+
return sampled
|
| 511 |
+
else:
|
| 512 |
+
return raw_coords
|
| 513 |
+
|
| 514 |
+
except Exception as e:
|
| 515 |
+
logger.error(f"Error in polygon_to_exterior_coords: {e}")
|
| 516 |
+
return []
|
| 517 |
+
|
| 518 |
+
def place_finger_cut_adjusted(
|
| 519 |
+
tool_polygon: Polygon,
|
| 520 |
+
points_inch: list,
|
| 521 |
+
existing_centers: list,
|
| 522 |
+
all_polygons: list,
|
| 523 |
+
circle_diameter: float = 25.4,
|
| 524 |
+
min_gap: float = 0.5,
|
| 525 |
+
max_attempts: int = 100
|
| 526 |
+
) -> Tuple[Polygon, tuple]:
|
| 527 |
+
"""Place finger cuts with collision avoidance"""
|
| 528 |
+
logger.info(f"Starting place_finger_cut_adjusted with {len(points_inch)} input points")
|
| 529 |
+
|
| 530 |
+
def fallback_solution():
|
| 531 |
+
logger.warning("Using fallback approach for finger cut placement")
|
| 532 |
+
fallback_center = points_inch[len(points_inch) // 2]
|
| 533 |
+
r = circle_diameter / 2.0
|
| 534 |
+
fallback_circle = Point(fallback_center).buffer(r, resolution=32)
|
| 535 |
+
try:
|
| 536 |
+
union_poly = tool_polygon.union(fallback_circle)
|
| 537 |
+
except Exception as e:
|
| 538 |
+
logger.warning(f"Fallback union failed ({e}); trying buffer-union fallback")
|
| 539 |
+
union_poly = tool_polygon.buffer(0).union(fallback_circle.buffer(0))
|
| 540 |
+
|
| 541 |
+
existing_centers.append(fallback_center)
|
| 542 |
+
logger.info(f"Fallback finger cut placed at {fallback_center}")
|
| 543 |
+
return union_poly, fallback_center
|
| 544 |
+
|
| 545 |
+
r = circle_diameter / 2.0
|
| 546 |
+
needed_center_dist = circle_diameter + min_gap
|
| 547 |
+
|
| 548 |
+
raw_perimeter = polygon_to_exterior_coords(tool_polygon)
|
| 549 |
+
if not raw_perimeter:
|
| 550 |
+
logger.warning("No valid exterior coords found; using fallback immediately")
|
| 551 |
+
return fallback_solution()
|
| 552 |
+
|
| 553 |
+
if len(raw_perimeter) > 100:
|
| 554 |
+
step = len(raw_perimeter) // 100
|
| 555 |
+
perimeter_coords = raw_perimeter[::step]
|
| 556 |
+
logger.info(f"Subsampled perimeter from {len(raw_perimeter)} to {len(perimeter_coords)} points")
|
| 557 |
+
else:
|
| 558 |
+
perimeter_coords = raw_perimeter[:]
|
| 559 |
+
|
| 560 |
+
indices = list(range(len(perimeter_coords)))
|
| 561 |
+
np.random.shuffle(indices)
|
| 562 |
+
logger.debug(f"Shuffled perimeter indices for candidate order")
|
| 563 |
+
|
| 564 |
+
start_time = time.time()
|
| 565 |
+
timeout_secs = 5.0
|
| 566 |
+
|
| 567 |
+
attempts = 0
|
| 568 |
+
try:
|
| 569 |
+
while attempts < max_attempts:
|
| 570 |
+
if time.time() - start_time > timeout_secs - 0.1:
|
| 571 |
+
logger.warning(f"Approaching timeout after {attempts} attempts")
|
| 572 |
+
return fallback_solution()
|
| 573 |
+
|
| 574 |
+
for idx in indices:
|
| 575 |
+
if time.time() - start_time > timeout_secs - 0.05:
|
| 576 |
+
logger.warning("Timeout during candidate-point loop")
|
| 577 |
+
return fallback_solution()
|
| 578 |
+
|
| 579 |
+
cx, cy = perimeter_coords[idx]
|
| 580 |
+
for dx, dy in [(0, 0), (-min_gap/2, 0), (min_gap/2, 0), (0, -min_gap/2), (0, min_gap/2)]:
|
| 581 |
+
candidate_center = (cx + dx, cy + dy)
|
| 582 |
+
|
| 583 |
+
# Check distance to existing finger centers
|
| 584 |
+
too_close_finger = any(
|
| 585 |
+
np.hypot(candidate_center[0] - ex, candidate_center[1] - ey)
|
| 586 |
+
< needed_center_dist
|
| 587 |
+
for (ex, ey) in existing_centers
|
| 588 |
+
)
|
| 589 |
+
if too_close_finger:
|
| 590 |
+
continue
|
| 591 |
+
|
| 592 |
+
# Build candidate circle
|
| 593 |
+
candidate_circle = Point(candidate_center).buffer(r, resolution=32)
|
| 594 |
+
|
| 595 |
+
# Must overlap ≥30% with this polygon
|
| 596 |
+
try:
|
| 597 |
+
inter_area = tool_polygon.intersection(candidate_circle).area
|
| 598 |
+
except Exception:
|
| 599 |
+
continue
|
| 600 |
+
|
| 601 |
+
if inter_area < 0.3 * candidate_circle.area:
|
| 602 |
+
continue
|
| 603 |
+
|
| 604 |
+
# Must not intersect other polygons
|
| 605 |
+
invalid = False
|
| 606 |
+
for other_poly in all_polygons:
|
| 607 |
+
if other_poly.equals(tool_polygon):
|
| 608 |
+
continue
|
| 609 |
+
if other_poly.buffer(min_gap).intersects(candidate_circle) or \
|
| 610 |
+
other_poly.buffer(min_gap).touches(candidate_circle):
|
| 611 |
+
invalid = True
|
| 612 |
+
break
|
| 613 |
+
if invalid:
|
| 614 |
+
continue
|
| 615 |
+
|
| 616 |
+
# Union and return
|
| 617 |
+
try:
|
| 618 |
+
union_poly = tool_polygon.union(candidate_circle)
|
| 619 |
+
if union_poly.geom_type == "MultiPolygon" and len(union_poly.geoms) > 1:
|
| 620 |
+
continue
|
| 621 |
+
if union_poly.equals(tool_polygon):
|
| 622 |
+
continue
|
| 623 |
+
except Exception:
|
| 624 |
+
continue
|
| 625 |
+
|
| 626 |
+
existing_centers.append(candidate_center)
|
| 627 |
+
logger.info(f"Finger cut placed successfully at {candidate_center} after {attempts} attempts")
|
| 628 |
+
return union_poly, candidate_center
|
| 629 |
+
|
| 630 |
+
attempts += 1
|
| 631 |
+
if attempts >= (max_attempts // 2) and (time.time() - start_time) > timeout_secs * 0.8:
|
| 632 |
+
logger.warning(f"Approaching timeout (attempt {attempts})")
|
| 633 |
+
return fallback_solution()
|
| 634 |
+
|
| 635 |
+
logger.warning(f"No valid spot after {max_attempts} attempts, using fallback")
|
| 636 |
+
return fallback_solution()
|
| 637 |
+
|
| 638 |
+
except Exception as e:
|
| 639 |
+
logger.error(f"Error in place_finger_cut_adjusted: {e}")
|
| 640 |
+
return fallback_solution()
|
| 641 |
+
|
| 642 |
+
def extract_outlines(binary_image: np.ndarray) -> Tuple[np.ndarray, list]:
|
| 643 |
+
"""Extract outlines from binary image"""
|
| 644 |
+
contours, _ = cv2.findContours(
|
| 645 |
+
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
| 646 |
+
)
|
| 647 |
+
outline_image = np.full_like(binary_image, 255)
|
| 648 |
+
return outline_image, contours
|
| 649 |
+
|
| 650 |
+
def round_edges(mask: np.ndarray, radius_mm: float, scaling_factor: float) -> np.ndarray:
|
| 651 |
+
"""Round mask edges using contour smoothing"""
|
| 652 |
+
if radius_mm <= 0 or scaling_factor <= 0:
|
| 653 |
+
return mask
|
| 654 |
+
|
| 655 |
+
radius_px = max(1, int(radius_mm / scaling_factor))
|
| 656 |
+
|
| 657 |
+
if np.count_nonzero(mask) < 500:
|
| 658 |
+
return cv2.dilate(cv2.erode(mask, np.ones((3,3))), np.ones((3,3)))
|
| 659 |
+
|
| 660 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
| 661 |
+
contours = [c for c in contours if cv2.contourArea(c) > 100]
|
| 662 |
+
smoothed_contours = []
|
| 663 |
+
|
| 664 |
+
for contour in contours:
|
| 665 |
+
try:
|
| 666 |
+
resampled = resample_contour(contour, radius_px)
|
| 667 |
+
resampled = resampled.astype(np.int32).reshape((-1, 1, 2))
|
| 668 |
+
smoothed_contours.append(resampled)
|
| 669 |
+
except Exception as e:
|
| 670 |
+
logger.warning(f"Error smoothing contour: {e}")
|
| 671 |
+
smoothed_contours.append(contour)
|
| 672 |
+
|
| 673 |
+
rounded = np.zeros_like(mask)
|
| 674 |
+
cv2.drawContours(rounded, smoothed_contours, -1, 255, thickness=cv2.FILLED)
|
| 675 |
+
|
| 676 |
+
return rounded
|
| 677 |
+
|
| 678 |
+
def cleanup_memory():
|
| 679 |
+
"""Clean up memory after processing"""
|
| 680 |
+
if torch.cuda.is_available():
|
| 681 |
+
torch.cuda.empty_cache()
|
| 682 |
+
gc.collect()
|
| 683 |
+
logger.info("Memory cleanup completed")
|
| 684 |
+
|
| 685 |
+
def cleanup_models():
|
| 686 |
+
"""Unload models to free memory"""
|
| 687 |
+
global paper_detector_global, u2net_global, birefnet
|
| 688 |
+
if paper_detector_global is not None:
|
| 689 |
+
del paper_detector_global
|
| 690 |
+
paper_detector_global = None
|
| 691 |
+
if u2net_global is not None:
|
| 692 |
+
del u2net_global
|
| 693 |
+
u2net_global = None
|
| 694 |
+
if birefnet is not None:
|
| 695 |
+
del birefnet
|
| 696 |
+
birefnet = None
|
| 697 |
+
cleanup_memory()
|
| 698 |
+
|
| 699 |
+
def make_square(img: np.ndarray):
|
| 700 |
+
"""Make the image square by padding"""
|
| 701 |
+
height, width = img.shape[:2]
|
| 702 |
+
max_dim = max(height, width)
|
| 703 |
+
|
| 704 |
+
pad_height = (max_dim - height) // 2
|
| 705 |
+
pad_width = (max_dim - width) // 2
|
| 706 |
+
|
| 707 |
+
pad_height_extra = max_dim - height - 2 * pad_height
|
| 708 |
+
pad_width_extra = max_dim - width - 2 * pad_width
|
| 709 |
+
|
| 710 |
+
if len(img.shape) == 3:
|
| 711 |
+
padded = np.pad(
|
| 712 |
+
img,
|
| 713 |
+
(
|
| 714 |
+
(pad_height, pad_height + pad_height_extra),
|
| 715 |
+
(pad_width, pad_width + pad_width_extra),
|
| 716 |
+
(0, 0),
|
| 717 |
+
),
|
| 718 |
+
mode="edge",
|
| 719 |
+
)
|
| 720 |
+
else:
|
| 721 |
+
padded = np.pad(
|
| 722 |
+
img,
|
| 723 |
+
(
|
| 724 |
+
(pad_height, pad_height + pad_height_extra),
|
| 725 |
+
(pad_width, pad_width + pad_width_extra),
|
| 726 |
+
),
|
| 727 |
+
mode="edge",
|
| 728 |
+
)
|
| 729 |
+
|
| 730 |
+
return padded
|
| 731 |
+
|
| 732 |
+
def predict_with_paper(image, paper_size, offset, offset_unit, edge_radius, finger_clearance=False):
|
| 733 |
+
"""Main prediction function using paper as reference"""
|
| 734 |
+
|
| 735 |
+
if offset_unit == "inches":
|
| 736 |
+
offset *= 25.4
|
| 737 |
+
|
| 738 |
+
if edge_radius is None or edge_radius == 0:
|
| 739 |
+
edge_radius = 0.0001
|
| 740 |
+
|
| 741 |
+
if offset < 0:
|
| 742 |
+
raise gr.Error("Offset Value Can't be negative")
|
| 743 |
+
|
| 744 |
+
try:
|
| 745 |
+
# Detect paper bounds and calculate scaling factor
|
| 746 |
+
paper_contour, scaling_factor = detect_paper_bounds(image, paper_size)
|
| 747 |
+
logger.info(f"Paper detected with scaling factor: {scaling_factor:.4f} mm/px")
|
| 748 |
+
|
| 749 |
+
except PaperNotDetectedError as e:
|
| 750 |
+
return (
|
| 751 |
+
None, None, None, None,
|
| 752 |
+
f"Error: {str(e)}"
|
| 753 |
+
)
|
| 754 |
+
except Exception as e:
|
| 755 |
+
raise gr.Error(f"Error processing image: {str(e)}")
|
| 756 |
+
|
| 757 |
+
try:
|
| 758 |
+
# Remove background from main objects
|
| 759 |
+
orig_size = image.shape[:2]
|
| 760 |
+
objects_mask = remove_bg(image)
|
| 761 |
+
processed_size = objects_mask.shape[:2]
|
| 762 |
+
|
| 763 |
+
# Resize mask to match original image
|
| 764 |
+
objects_mask = cv2.resize(objects_mask, (image.shape[1], image.shape[0]))
|
| 765 |
+
|
| 766 |
+
# Remove paper area from mask to focus only on objects
|
| 767 |
+
objects_mask = exclude_paper_area(objects_mask, paper_contour)
|
| 768 |
+
|
| 769 |
+
# Validate single object
|
| 770 |
+
validate_single_object(objects_mask, paper_contour)
|
| 771 |
+
|
| 772 |
+
except (MultipleObjectsError, NoObjectDetectedError) as e:
|
| 773 |
+
return (
|
| 774 |
+
None, None, None, None,
|
| 775 |
+
f"Error: {str(e)}"
|
| 776 |
+
)
|
| 777 |
+
except Exception as e:
|
| 778 |
+
raise gr.Error(f"Error in object detection: {str(e)}")
|
| 779 |
+
|
| 780 |
+
# Apply edge rounding if specified
|
| 781 |
+
if edge_radius > 0:
|
| 782 |
+
rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor)
|
| 783 |
+
else:
|
| 784 |
+
rounded_mask = objects_mask.copy()
|
| 785 |
+
|
| 786 |
+
# Apply dilation for offset
|
| 787 |
+
if offset > 0:
|
| 788 |
+
offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
|
| 789 |
+
kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
|
| 790 |
+
dilated_mask = cv2.dilate(rounded_mask, kernel)
|
| 791 |
+
else:
|
| 792 |
+
dilated_mask = rounded_mask.copy()
|
| 793 |
+
|
| 794 |
+
# Save original dilated mask for output
|
| 795 |
+
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
|
| 796 |
+
dilated_mask_orig = dilated_mask.copy()
|
| 797 |
+
|
| 798 |
+
# Extract contours
|
| 799 |
+
outlines, contours = extract_outlines(dilated_mask)
|
| 800 |
+
|
| 801 |
+
try:
|
| 802 |
+
# Generate DXF
|
| 803 |
+
dxf, finger_polygons, original_polygons = save_dxf_spline(
|
| 804 |
+
contours,
|
| 805 |
+
scaling_factor,
|
| 806 |
+
processed_size[0],
|
| 807 |
+
finger_clearance=(finger_clearance == "On")
|
| 808 |
+
)
|
| 809 |
+
except FingerCutOverlapError as e:
|
| 810 |
+
raise gr.Error(str(e))
|
| 811 |
+
|
| 812 |
+
# Create annotated image
|
| 813 |
+
shrunked_img_contours = image.copy()
|
| 814 |
+
|
| 815 |
+
if finger_clearance == "On":
|
| 816 |
+
outlines = np.full_like(dilated_mask, 255)
|
| 817 |
+
for poly in finger_polygons:
|
| 818 |
+
try:
|
| 819 |
+
coords = np.array([
|
| 820 |
+
(int(x / scaling_factor), int(processed_size[0] - y / scaling_factor))
|
| 821 |
+
for x, y in poly.exterior.coords
|
| 822 |
+
], np.int32).reshape((-1, 1, 2))
|
| 823 |
+
|
| 824 |
+
cv2.drawContours(shrunked_img_contours, [coords], -1, (0, 255, 0), thickness=2)
|
| 825 |
+
cv2.drawContours(outlines, [coords], -1, 0, thickness=2)
|
| 826 |
+
except Exception as e:
|
| 827 |
+
logger.warning(f"Failed to draw finger cut: {e}")
|
| 828 |
+
continue
|
| 829 |
+
else:
|
| 830 |
+
outlines = np.full_like(dilated_mask, 255)
|
| 831 |
+
cv2.drawContours(shrunked_img_contours, contours, -1, (0, 255, 0), thickness=2)
|
| 832 |
+
cv2.drawContours(outlines, contours, -1, 0, thickness=2)
|
| 833 |
+
|
| 834 |
+
# Draw paper bounds on annotated image
|
| 835 |
+
cv2.drawContours(shrunked_img_contours, [paper_contour], -1, (255, 0, 0), thickness=3)
|
| 836 |
+
|
| 837 |
+
# Add paper size text
|
| 838 |
+
paper_text = f"Paper: {paper_size}"
|
| 839 |
+
cv2.putText(shrunked_img_contours, paper_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
| 840 |
+
|
| 841 |
+
cleanup_models()
|
| 842 |
+
|
| 843 |
+
return (
|
| 844 |
+
shrunked_img_contours,
|
| 845 |
+
outlines,
|
| 846 |
+
dxf,
|
| 847 |
+
dilated_mask_orig,
|
| 848 |
+
f"Scale: {scaling_factor:.4f} mm/px | Paper: {paper_size}"
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
def predict_full_paper(image, paper_size, enable_fillet, fillet_value_mm, enable_finger_cut, selected_outputs):
|
| 852 |
+
"""
|
| 853 |
+
Full prediction function with paper reference and flexible outputs
|
| 854 |
+
Returns DXF + conditionally selected additional outputs
|
| 855 |
+
"""
|
| 856 |
+
radius = fillet_value_mm if enable_fillet == "On" else 0
|
| 857 |
+
finger_flag = "On" if enable_finger_cut == "On" else "Off"
|
| 858 |
+
|
| 859 |
+
# Always get all outputs from predict_with_paper
|
| 860 |
+
ann, outlines, dxf_path, mask, scale_info = predict_with_paper(
|
| 861 |
+
image,
|
| 862 |
+
paper_size,
|
| 863 |
+
offset=0, # No offset for now, can be added as parameter later
|
| 864 |
+
offset_unit="mm",
|
| 865 |
+
edge_radius=radius,
|
| 866 |
+
finger_clearance=finger_flag,
|
| 867 |
+
)
|
| 868 |
+
|
| 869 |
+
# Return based on selected outputs
|
| 870 |
+
return (
|
| 871 |
+
dxf_path, # Always return DXF
|
| 872 |
+
ann if "Annotated Image" in selected_outputs else None,
|
| 873 |
+
outlines if "Outlines" in selected_outputs else None,
|
| 874 |
+
mask if "Mask" in selected_outputs else None,
|
| 875 |
+
scale_info # Always return scaling info
|
| 876 |
+
)
|
| 877 |
+
|
| 878 |
+
# Gradio Interface
|
| 879 |
+
if __name__ == "__main__":
|
| 880 |
+
os.makedirs("./outputs", exist_ok=True)
|
| 881 |
+
|
| 882 |
+
with gr.Blocks(title="Paper-Based DXF Generator", theme=gr.themes.Soft()) as demo:
|
| 883 |
+
gr.Markdown("""
|
| 884 |
+
# Paper-Based DXF Generator
|
| 885 |
+
|
| 886 |
+
Upload an image with a single object placed on paper (A4, A3, or US Letter).
|
| 887 |
+
The paper serves as a size reference for accurate DXF generation.
|
| 888 |
+
|
| 889 |
+
**Instructions:**
|
| 890 |
+
1. Place a single object on paper
|
| 891 |
+
2. Select the correct paper size
|
| 892 |
+
3. Configure options as needed
|
| 893 |
+
4. Click Submit to generate DXF
|
| 894 |
+
""")
|
| 895 |
+
|
| 896 |
+
with gr.Row():
|
| 897 |
+
with gr.Column():
|
| 898 |
+
input_image = gr.Image(
|
| 899 |
+
label="Input Image (Object on Paper)",
|
| 900 |
+
type="numpy",
|
| 901 |
+
height=400
|
| 902 |
+
)
|
| 903 |
+
|
| 904 |
+
paper_size = gr.Radio(
|
| 905 |
+
choices=["A4", "A3", "US Letter"],
|
| 906 |
+
value="A4",
|
| 907 |
+
label="Paper Size",
|
| 908 |
+
info="Select the paper size used in your image"
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
+
with gr.Group():
|
| 912 |
+
gr.Markdown("### Edge Rounding")
|
| 913 |
+
enable_fillet = gr.Radio(
|
| 914 |
+
choices=["On", "Off"],
|
| 915 |
+
value="Off",
|
| 916 |
+
label="Enable Edge Rounding",
|
| 917 |
+
interactive=True
|
| 918 |
+
)
|
| 919 |
+
|
| 920 |
+
fillet_value_mm = gr.Slider(
|
| 921 |
+
minimum=0,
|
| 922 |
+
maximum=20,
|
| 923 |
+
step=1,
|
| 924 |
+
value=5,
|
| 925 |
+
label="Edge Radius (mm)",
|
| 926 |
+
visible=False,
|
| 927 |
+
interactive=True
|
| 928 |
+
)
|
| 929 |
+
|
| 930 |
+
with gr.Group():
|
| 931 |
+
gr.Markdown("### Finger Cuts")
|
| 932 |
+
enable_finger_cut = gr.Radio(
|
| 933 |
+
choices=["On", "Off"],
|
| 934 |
+
value="Off",
|
| 935 |
+
label="Enable Finger Cuts",
|
| 936 |
+
info="Add circular cuts for easier handling"
|
| 937 |
+
)
|
| 938 |
+
|
| 939 |
+
output_options = gr.CheckboxGroup(
|
| 940 |
+
choices=["Annotated Image", "Outlines", "Mask"],
|
| 941 |
+
value=[],
|
| 942 |
+
label="Additional Outputs",
|
| 943 |
+
info="DXF is always included"
|
| 944 |
+
)
|
| 945 |
+
|
| 946 |
+
submit_btn = gr.Button("Generate DXF", variant="primary", size="lg")
|
| 947 |
+
|
| 948 |
+
with gr.Column():
|
| 949 |
+
with gr.Group():
|
| 950 |
+
gr.Markdown("### Generated Files")
|
| 951 |
+
dxf_file = gr.File(label="DXF File", file_types=[".dxf"])
|
| 952 |
+
scale_info = gr.Textbox(label="Scaling Information", interactive=False)
|
| 953 |
+
|
| 954 |
+
with gr.Group():
|
| 955 |
+
gr.Markdown("### Preview Images")
|
| 956 |
+
output_image = gr.Image(label="Annotated Image", visible=False)
|
| 957 |
+
outlines_image = gr.Image(label="Outlines", visible=False)
|
| 958 |
+
mask_image = gr.Image(label="Mask", visible=False)
|
| 959 |
+
|
| 960 |
+
# Dynamic visibility updates
|
| 961 |
+
def toggle_fillet(choice):
|
| 962 |
+
return gr.update(visible=(choice == "On"))
|
| 963 |
+
|
| 964 |
+
def update_outputs_visibility(selected):
|
| 965 |
+
return [
|
| 966 |
+
gr.update(visible="Annotated Image" in selected),
|
| 967 |
+
gr.update(visible="Outlines" in selected),
|
| 968 |
+
gr.update(visible="Mask" in selected)
|
| 969 |
+
]
|
| 970 |
+
|
| 971 |
+
# Event handlers
|
| 972 |
+
enable_fillet.change(
|
| 973 |
+
fn=toggle_fillet,
|
| 974 |
+
inputs=enable_fillet,
|
| 975 |
+
outputs=fillet_value_mm
|
| 976 |
+
)
|
| 977 |
+
|
| 978 |
+
output_options.change(
|
| 979 |
+
fn=update_outputs_visibility,
|
| 980 |
+
inputs=output_options,
|
| 981 |
+
outputs=[output_image, outlines_image, mask_image]
|
| 982 |
+
)
|
| 983 |
+
|
| 984 |
+
submit_btn.click(
|
| 985 |
+
fn=predict_full_paper,
|
| 986 |
+
inputs=[
|
| 987 |
+
input_image,
|
| 988 |
+
paper_size,
|
| 989 |
+
enable_fillet,
|
| 990 |
+
fillet_value_mm,
|
| 991 |
+
enable_finger_cut,
|
| 992 |
+
output_options
|
| 993 |
+
],
|
| 994 |
+
outputs=[dxf_file, output_image, outlines_image, mask_image, scale_info]
|
| 995 |
+
)
|
| 996 |
+
|
| 997 |
+
# Example gallery
|
| 998 |
+
with gr.Row():
|
| 999 |
+
gr.Markdown("""
|
| 1000 |
+
### Tips for Best Results:
|
| 1001 |
+
- Ensure good lighting and clear paper edges
|
| 1002 |
+
- Place object completely on the paper
|
| 1003 |
+
- Avoid shadows that might interfere with detection
|
| 1004 |
+
- Use high contrast between object and paper
|
| 1005 |
+
""")
|
| 1006 |
+
|
| 1007 |
+
demo.launch(share=True)
|