mlbench123 commited on
Commit
0d118b9
·
verified ·
1 Parent(s): 7ec8abc

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -399
app.py DELETED
@@ -1,399 +0,0 @@
1
- import os
2
- from pathlib import Path
3
- from typing import List, Union
4
- from PIL import Image
5
- import ezdxf.units
6
- import numpy as np
7
- import torch
8
- from torchvision import transforms
9
- from ultralytics import YOLOWorld, YOLO
10
- from ultralytics.engine.results import Results
11
- from ultralytics.utils.plotting import save_one_box
12
- from transformers import AutoModelForImageSegmentation
13
- import cv2
14
- import ezdxf
15
- import gradio as gr
16
- import gc
17
- from scalingtestupdated import calculate_scaling_factor
18
- from scipy.interpolate import splprep, splev
19
- from scipy.ndimage import gaussian_filter1d
20
-
21
- birefnet = AutoModelForImageSegmentation.from_pretrained(
22
- "zhengpeng7/BiRefNet", trust_remote_code=True
23
- )
24
-
25
- device = "cpu"
26
- torch.set_float32_matmul_precision(["high", "highest"][0])
27
-
28
- birefnet.to(device)
29
- birefnet.eval()
30
- transform_image = transforms.Compose(
31
- [
32
- transforms.Resize((1024, 1024)),
33
- transforms.ToTensor(),
34
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
35
- ]
36
- )
37
-
38
-
39
-
40
- def remove_bg(image: np.ndarray) -> np.ndarray:
41
- image = Image.fromarray(image)
42
- input_images = transform_image(image).unsqueeze(0).to("cpu")
43
-
44
- # Prediction
45
- with torch.no_grad():
46
- preds = birefnet(input_images)[-1].sigmoid().cpu()
47
- pred = preds[0].squeeze()
48
-
49
- # Show Results
50
- pred_pil: Image = transforms.ToPILImage()(pred)
51
- print(pred_pil)
52
- # Scale proportionally with max length to 1024 for faster showing
53
- scale_ratio = 1024 / max(image.size)
54
- scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio))
55
-
56
- return np.array(pred_pil.resize(scaled_size))
57
-
58
-
59
- def make_square(img: np.ndarray):
60
- # Get dimensions
61
- height, width = img.shape[:2]
62
-
63
- # Find the larger dimension
64
- max_dim = max(height, width)
65
-
66
- # Calculate padding
67
- pad_height = (max_dim - height) // 2
68
- pad_width = (max_dim - width) // 2
69
-
70
- # Handle odd dimensions
71
- pad_height_extra = max_dim - height - 2 * pad_height
72
- pad_width_extra = max_dim - width - 2 * pad_width
73
-
74
- # Create padding with edge colors
75
- if len(img.shape) == 3: # Color image
76
- # Pad the image
77
- padded = np.pad(
78
- img,
79
- (
80
- (pad_height, pad_height + pad_height_extra),
81
- (pad_width, pad_width + pad_width_extra),
82
- (0, 0),
83
- ),
84
- mode="edge",
85
- )
86
- else: # Grayscale image
87
- padded = np.pad(
88
- img,
89
- (
90
- (pad_height, pad_height + pad_height_extra),
91
- (pad_width, pad_width + pad_width_extra),
92
- ),
93
- mode="edge",
94
- )
95
-
96
- return padded
97
-
98
-
99
- def exclude_scaling_box(
100
- image: np.ndarray,
101
- bbox: np.ndarray,
102
- orig_size: tuple,
103
- processed_size: tuple,
104
- expansion_factor: float = 1.5,
105
- ) -> np.ndarray:
106
- # Unpack the bounding box
107
- x_min, y_min, x_max, y_max = map(int, bbox)
108
-
109
- # Calculate scaling factors
110
- scale_x = processed_size[1] / orig_size[1] # Width scale
111
- scale_y = processed_size[0] / orig_size[0] # Height scale
112
-
113
- # Adjust bounding box coordinates
114
- x_min = int(x_min * scale_x)
115
- x_max = int(x_max * scale_x)
116
- y_min = int(y_min * scale_y)
117
- y_max = int(y_max * scale_y)
118
-
119
- # Calculate expanded box coordinates
120
- box_width = x_max - x_min
121
- box_height = y_max - y_min
122
- expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
123
- expanded_x_max = min(
124
- image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2)
125
- )
126
- expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
127
- expanded_y_max = min(
128
- image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2)
129
- )
130
-
131
- # Black out the expanded region
132
- image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
133
-
134
- return image
135
-
136
-
137
- def resample_contour(contour):
138
- # ---------------------------------------------------------------------------------------- #
139
- # Get all the parameters at the start:
140
- num_points = 1000
141
- smoothing_factor = 5
142
-
143
- smoothed_x_sigma = 1
144
- smoothed_y_sigma = 1
145
- # ---------------------------------------------------------------------------------------- #
146
- contour = contour[:, 0, :]
147
-
148
- tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
149
-
150
- u = np.linspace(0, 1, num_points)
151
- resampled_points = splev(u, tck)
152
-
153
- smoothed_x = gaussian_filter1d(resampled_points[0], sigma=smoothed_x_sigma)
154
- smoothed_y = gaussian_filter1d(resampled_points[1], sigma=smoothed_y_sigma)
155
-
156
- return np.array([smoothed_x, smoothed_y]).T
157
-
158
-
159
- def save_dxf_spline(inflated_contours, scaling_factor, height):
160
- # ---------------------------------------------------------------------------------------- #
161
- # Get all the parameters at the start:
162
- degree = 3
163
- closed = True
164
- # ---------------------------------------------------------------------------------------- #
165
-
166
- doc = ezdxf.new(units=0)
167
- doc.units = ezdxf.units.IN
168
- doc.header["$INSUNITS"] = ezdxf.units.IN
169
-
170
- msp = doc.modelspace()
171
-
172
- for contour in inflated_contours:
173
- resampled_contour = resample_contour(contour)
174
- points = [
175
- (x * scaling_factor, (height - y) * scaling_factor)
176
- for x, y in resampled_contour
177
- ]
178
- if len(points) >= 3:
179
- # Manually Closing the Contour in case it hasn't been closed by the contours before.
180
- if np.linalg.norm(np.array(points[0]) - np.array(points[-1])) > 1e-2:
181
- points.append(points[0])
182
-
183
- spline = msp.add_spline(points, degree=degree)
184
- spline.closed = closed
185
-
186
- # Step 14: Save the DXF file
187
- dxf_filepath = os.path.join("./outputs", "out.dxf")
188
- doc.saveas(dxf_filepath)
189
- return dxf_filepath
190
-
191
-
192
- def extract_outlines(binary_image: np.ndarray) -> np.ndarray:
193
- """
194
- Extracts and draws the outlines of masks from a binary image.
195
- Args:
196
- binary_image: Grayscale binary image where white represents masks and black is the background.
197
- Returns:
198
- Image with outlines drawn.
199
- """
200
- # Detect contours from the binary image
201
- contours, _ = cv2.findContours(
202
- binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
203
- )
204
-
205
- # smooth_contours_list = []
206
- # for contour in contours:
207
- # smooth_contours_list.append(smooth_contours(contour))
208
- # Create a blank image to draw contours
209
- outline_image = np.zeros_like(binary_image)
210
-
211
- # Draw the contours on the blank image
212
- cv2.drawContours(
213
- outline_image, contours, -1, (255), thickness=1
214
- ) # White color for outlines
215
-
216
- return cv2.bitwise_not(outline_image), contours
217
-
218
-
219
- def shrink_bbox(image: np.ndarray, shrink_factor: float):
220
- """
221
- Crops the central 80% of the image, maintaining proportions for non-square images.
222
- Args:
223
- image: Input image as a NumPy array.
224
- Returns:
225
- Cropped image as a NumPy array.
226
- """
227
- height, width = image.shape[:2]
228
- center_x, center_y = width // 2, height // 2
229
-
230
- # Calculate 80% dimensions
231
- new_width = int(width * shrink_factor)
232
- new_height = int(height * shrink_factor)
233
-
234
- # Determine the top-left and bottom-right points for cropping
235
- x1 = max(center_x - new_width // 2, 0)
236
- y1 = max(center_y - new_height // 2, 0)
237
- x2 = min(center_x + new_width // 2, width)
238
- y2 = min(center_y + new_height // 2, height)
239
-
240
- # Crop the image
241
- cropped_image = image[y1:y2, x1:x2]
242
- return cropped_image
243
-
244
-
245
- def to_dxf(contours):
246
- doc = ezdxf.new()
247
- msp = doc.modelspace()
248
-
249
- for contour in contours:
250
- points = [(point[0][0], point[0][1]) for point in contour]
251
- msp.add_lwpolyline(points, close=True) # Add a polyline for each contour
252
-
253
- doc.saveas("./outputs/out.dxf")
254
- return "./outputs/out.dxf"
255
-
256
-
257
- def smooth_contours(contour):
258
- epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01)
259
- return cv2.approxPolyDP(contour, epsilon, True)
260
-
261
-
262
- def scale_image(image: np.ndarray, scale_factor: float) -> np.ndarray:
263
- """
264
- Resize image by scaling both width and height by the same factor.
265
-
266
- Args:
267
- image: Input numpy image
268
- scale_factor: Factor to scale the image (e.g., 0.5 for half size, 2 for double size)
269
-
270
- Returns:
271
- np.ndarray: Resized image
272
- """
273
- if scale_factor <= 0:
274
- raise ValueError("Scale factor must be positive")
275
-
276
- current_height, current_width = image.shape[:2]
277
-
278
- # Calculate new dimensions
279
- new_width = int(current_width * scale_factor)
280
- new_height = int(current_height * scale_factor)
281
-
282
- # Choose interpolation method based on whether we're scaling up or down
283
- interpolation = cv2.INTER_AREA if scale_factor < 1 else cv2.INTER_CUBIC
284
-
285
- # Resize image
286
- resized_image = cv2.resize(
287
- image, (new_width, new_height), interpolation=interpolation
288
- )
289
-
290
- return resized_image
291
-
292
-
293
- def detect_reference_square(img) -> np.ndarray:
294
- box_detector = YOLO("./best.pt")
295
- res = box_detector.predict(img)
296
- del box_detector
297
- return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[
298
- 0
299
- ].cpu().boxes.xyxy[0]
300
-
301
-
302
- def resize_img(img: np.ndarray, resize_dim):
303
- return np.array(Image.fromarray(img).resize(resize_dim))
304
-
305
-
306
- def predict(image, offset_inches):
307
-
308
- # Detect the scaling reference square
309
- try:
310
- reference_obj_img, scaling_box_coords = detect_reference_square(image)
311
- except:
312
- raise gr.Error("Unable to DETECT COIN, please take another picture with different magnification level!")
313
-
314
- # reference_obj_img_scaled = shrink_bbox(reference_obj_img, 1.2)
315
- # make the image sqaure so it does not effect the size of objects
316
- reference_obj_img = make_square(reference_obj_img)
317
- reference_square_mask = remove_bg(reference_obj_img)
318
-
319
- # make the mask same size as org image
320
- reference_square_mask = resize_img(
321
- reference_square_mask, (reference_obj_img.shape[1], reference_obj_img.shape[0])
322
- )
323
-
324
- try:
325
- scaling_factor = calculate_scaling_factor(
326
- reference_image_path="./coin.png",
327
- target_image=reference_square_mask,
328
- feature_detector="ORB",
329
- )
330
- except:
331
- scaling_factor = 1.0
332
-
333
- # Save original size before `remove_bg` processing
334
- orig_size = image.shape[:2]
335
- # Generate foreground mask and save its size
336
- objects_mask = remove_bg(image)
337
-
338
- processed_size = objects_mask.shape[:2]
339
- # Exclude scaling box region from objects mask
340
- objects_mask = exclude_scaling_box(
341
- objects_mask,
342
- scaling_box_coords,
343
- orig_size,
344
- processed_size,
345
- expansion_factor=3.0,
346
- )
347
- objects_mask = resize_img(
348
- objects_mask, (image.shape[1], image.shape[0])
349
- )
350
- offset_pixels = (offset_inches / scaling_factor) * 2 + 1
351
- dilated_mask = cv2.dilate(
352
- objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
353
- )
354
-
355
- # Scale the object mask according to scaling factor
356
- # objects_mask_scaled = scale_image(objects_mask, scaling_factor)
357
- Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
358
- outlines, contours = extract_outlines(dilated_mask)
359
- shrunked_img_contours = cv2.drawContours(
360
- image, contours, -1, (0, 0, 255), thickness=2
361
- )
362
- dxf = save_dxf_spline(contours, scaling_factor, processed_size[0])
363
-
364
- return (
365
- cv2.cvtColor(shrunked_img_contours, cv2.COLOR_BGR2RGB),
366
- outlines,
367
- dxf,
368
- dilated_mask,
369
- scaling_factor,
370
- )
371
-
372
-
373
- if __name__ == "__main__":
374
- os.makedirs("./outputs", exist_ok=True)
375
-
376
- ifer = gr.Interface(
377
- fn=predict,
378
- inputs=[
379
- gr.Image(label="Input Image"),
380
- gr.Number(label="Offset value for Mask(inches)", value=0.075),
381
- ],
382
- outputs=[
383
- gr.Image(label="Ouput Image"),
384
- gr.Image(label="Outlines of Objects"),
385
- gr.File(label="DXF file"),
386
- gr.Image(label="Mask"),
387
- gr.Textbox(
388
- label="Scaling Factor(mm)",
389
- placeholder="Every pixel is equal to mentioned number in inches",
390
- ),
391
- ],
392
- examples=[
393
- ["./examples/Test20.jpg", 0.075],
394
- ["./examples/Test21.jpg", 0.075],
395
- ["./examples/Test22.jpg", 0.075],
396
- ["./examples/Test23.jpg", 0.075],
397
- ],
398
- )
399
- ifer.launch(share=True)