mlbench123 commited on
Commit
133081d
·
verified ·
1 Parent(s): 69eac39

Upload scalingtestupdated.py

Browse files
Files changed (1) hide show
  1. scalingtestupdated.py +188 -0
scalingtestupdated.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import os
4
+ import argparse
5
+ from typing import Union
6
+ from matplotlib import pyplot as plt
7
+
8
+
9
+ class ScalingSquareDetector:
10
+ def __init__(self, feature_detector="ORB", debug=False):
11
+ """
12
+ Initialize the detector with the desired feature matching algorithm.
13
+ :param feature_detector: "ORB" or "SIFT" (default is "ORB").
14
+ :param debug: If True, saves intermediate images for debugging.
15
+ """
16
+ self.feature_detector = feature_detector
17
+ self.debug = debug
18
+ self.detector = self._initialize_detector()
19
+
20
+ def _initialize_detector(self):
21
+ """
22
+ Initialize the chosen feature detector.
23
+ :return: OpenCV detector object.
24
+ """
25
+ if self.feature_detector.upper() == "SIFT":
26
+ return cv2.SIFT_create()
27
+ elif self.feature_detector.upper() == "ORB":
28
+ return cv2.ORB_create()
29
+ else:
30
+ raise ValueError("Invalid feature detector. Choose 'ORB' or 'SIFT'.")
31
+
32
+ def find_scaling_square(
33
+ self, reference_image_path, target_image, known_size_mm, roi_margin=30
34
+ ):
35
+ """
36
+ Detect the scaling square in the target image based on the reference image.
37
+ :param reference_image_path: Path to the reference image of the square.
38
+ :param target_image_path: Path to the target image containing the square.
39
+ :param known_size_mm: Physical size of the square in millimeters.
40
+ :param roi_margin: Margin to expand the ROI around the detected square (in pixels).
41
+ :return: Scaling factor (mm per pixel).
42
+ """
43
+ contours, _ = cv2.findContours(
44
+ target_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
45
+ )
46
+
47
+ if not contours:
48
+ raise ValueError("No contours found in the cropped ROI.")
49
+
50
+ # # Select the largest square-like contour
51
+ print(f"No of contours: {len(contours)}")
52
+ largest_square = None
53
+ # largest_square_area = 0
54
+ # for contour in contours:
55
+ # x_c, y_c, w_c, h_c = cv2.boundingRect(contour)
56
+ # aspect_ratio = w_c / float(h_c)
57
+ # if 0.9 <= aspect_ratio <= 1.1:
58
+ # peri = cv2.arcLength(contour, True)
59
+ # approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
60
+ # if len(approx) == 4:
61
+ # area = cv2.contourArea(contour)
62
+ # if area > largest_square_area:
63
+ # largest_square = contour
64
+ # largest_square_area = area
65
+
66
+ for contour in contours:
67
+ largest_square = contour
68
+
69
+ # if largest_square is None:
70
+ # raise ValueError("No square-like contour found in the ROI.")
71
+
72
+ # Draw the largest contour on the original image
73
+ target_image_color = cv2.cvtColor(target_image, cv2.COLOR_GRAY2BGR)
74
+ cv2.drawContours(
75
+ target_image_color, largest_square, -1, (255, 0, 0), 3
76
+ )
77
+
78
+ # if self.debug:
79
+ cv2.imwrite("largest_contour.jpg", target_image_color)
80
+
81
+ # Calculate the bounding rectangle of the largest contour
82
+ x, y, w, h = cv2.boundingRect(largest_square)
83
+ square_width_px = w
84
+ square_height_px = h
85
+ print(f"Reference object size: {known_size_mm} mm")
86
+ print(f"width: {square_width_px} px")
87
+ print(f"height: {square_height_px} px")
88
+
89
+ # Calculate the scaling factor
90
+ avg_square_size_px = (square_width_px + square_height_px) / 2
91
+ print(f"avg square size: {avg_square_size_px} px")
92
+ scaling_factor = known_size_mm / avg_square_size_px # mm per pixel
93
+ print(f"scaling factor: {scaling_factor} mm per pixel")
94
+
95
+ return scaling_factor #, square_height_px, square_width_px, roi_binary
96
+
97
+ def draw_debug_images(self, output_folder):
98
+ """
99
+ Save debug images if enabled.
100
+ :param output_folder: Directory to save debug images.
101
+ """
102
+ if self.debug:
103
+ if not os.path.exists(output_folder):
104
+ os.makedirs(output_folder)
105
+ debug_images = ["largest_contour.jpg"]
106
+ for img_name in debug_images:
107
+ if os.path.exists(img_name):
108
+ os.rename(img_name, os.path.join(output_folder, img_name))
109
+
110
+
111
+ def calculate_scaling_factor(
112
+ reference_image_path,
113
+ target_image,
114
+ reference_obj_size_mm,
115
+ feature_detector="ORB",
116
+ debug=False,
117
+ roi_margin=30,
118
+ ):
119
+ # Initialize detector
120
+ detector = ScalingSquareDetector(feature_detector=feature_detector, debug=debug)
121
+
122
+ # Find scaling square and calculate scaling factor
123
+ scaling_factor = detector.find_scaling_square(
124
+ reference_image_path=reference_image_path,
125
+ target_image=target_image,
126
+ known_size_mm=reference_obj_size_mm,
127
+ roi_margin=roi_margin,
128
+ )
129
+
130
+ # Save debug images
131
+ if debug:
132
+ detector.draw_debug_images("debug_outputs")
133
+
134
+ return scaling_factor
135
+
136
+
137
+ # Example usage:
138
+ if __name__ == "__main__":
139
+ import os
140
+ from PIL import Image
141
+ from ultralytics import YOLO
142
+ from app import yolo_detect, shrink_bbox
143
+ from ultralytics.utils.plotting import save_one_box
144
+
145
+ for idx, file in enumerate(os.listdir("./sample_images")):
146
+ img = np.array(Image.open(os.path.join("./sample_images", file)))
147
+ img = yolo_detect(img, ['box'])
148
+ model = YOLO("./best.pt")
149
+ res = model.predict(img, conf=0.6)
150
+
151
+ box_img = save_one_box(res[0].cpu().boxes.xyxy, im=res[0].orig_img, save=False)
152
+ # img = shrink_bbox(box_img, 1.20)
153
+ cv2.imwrite(f"./outputs/{idx}_{file}", box_img)
154
+
155
+ print("File: ",f"./outputs/{idx}_{file}")
156
+ try:
157
+
158
+ scaling_factor = calculate_scaling_factor(
159
+ reference_image_path="./coin.png",
160
+ target_image=box_img,
161
+ known_square_size_mm=20,
162
+ feature_detector="ORB",
163
+ debug=False,
164
+ roi_margin=90,
165
+ )
166
+ # cv2.imwrite(f"./outputs/{idx}_binary_{file}", roi_binary)
167
+
168
+ # Square size in mm
169
+ # square_size_mm = 12.7
170
+
171
+ # # Compute the calculated scaling factors and compare
172
+ # calculated_scaling_factor = square_size_mm / height_px
173
+ # discrepancy = abs(calculated_scaling_factor - scaling_factor)
174
+ # import pprint
175
+ # pprint.pprint({
176
+ # "height_px": height_px,
177
+ # "width_px": width_px,
178
+ # "given_scaling_factor": scaling_factor,
179
+ # "calculated_scaling_factor": calculated_scaling_factor,
180
+ # "discrepancy": discrepancy,
181
+ # })
182
+
183
+
184
+ print(f"Scaling Factor (mm per pixel): {scaling_factor:.6f}")
185
+ except Exception as e:
186
+ from traceback import print_exc
187
+ print(print_exc())
188
+ print(f"Error: {e}")