Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -36,23 +36,6 @@ transform_image = transforms.Compose(
|
|
36 |
)
|
37 |
|
38 |
|
39 |
-
def yolo_detect(
|
40 |
-
image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor],
|
41 |
-
classes: List[str],
|
42 |
-
) -> np.ndarray:
|
43 |
-
drawer_detector = YOLOWorld("yolov8x-worldv2.pt")
|
44 |
-
drawer_detector.set_classes(classes)
|
45 |
-
results: List[Results] = drawer_detector.predict(image)
|
46 |
-
boxes = []
|
47 |
-
for result in results:
|
48 |
-
boxes.append(
|
49 |
-
save_one_box(result.cpu().boxes.xyxy, im=result.orig_img, save=False)
|
50 |
-
)
|
51 |
-
|
52 |
-
del drawer_detector
|
53 |
-
|
54 |
-
return boxes[0]
|
55 |
-
|
56 |
|
57 |
def remove_bg(image: np.ndarray) -> np.ndarray:
|
58 |
image = Image.fromarray(image)
|
@@ -338,17 +321,12 @@ def resize_img(img: np.ndarray, resize_dim):
|
|
338 |
|
339 |
|
340 |
def predict(image, offset_inches):
|
341 |
-
|
342 |
-
drawer_img = yolo_detect(image, ["box"])
|
343 |
-
shrunked_img = make_square(shrink_bbox(drawer_img, 0.8))
|
344 |
-
except:
|
345 |
-
raise gr.Error("Unable to DETECT DRAWER, please take another picture with different magnification level!")
|
346 |
-
|
347 |
# Detect the scaling reference square
|
348 |
try:
|
349 |
-
reference_obj_img, scaling_box_coords = detect_reference_square(
|
350 |
except:
|
351 |
-
raise gr.Error("Unable to DETECT
|
352 |
|
353 |
# reference_obj_img_scaled = shrink_bbox(reference_obj_img, 1.2)
|
354 |
# make the image sqaure so it does not effect the size of objects
|
@@ -370,9 +348,9 @@ def predict(image, offset_inches):
|
|
370 |
scaling_factor = 1.0
|
371 |
|
372 |
# Save original size before `remove_bg` processing
|
373 |
-
orig_size =
|
374 |
# Generate foreground mask and save its size
|
375 |
-
objects_mask = remove_bg(
|
376 |
|
377 |
processed_size = objects_mask.shape[:2]
|
378 |
# Exclude scaling box region from objects mask
|
@@ -384,7 +362,7 @@ def predict(image, offset_inches):
|
|
384 |
expansion_factor=3.0,
|
385 |
)
|
386 |
objects_mask = resize_img(
|
387 |
-
objects_mask, (
|
388 |
)
|
389 |
offset_pixels = (offset_inches / scaling_factor) * 2 + 1
|
390 |
dilated_mask = cv2.dilate(
|
|
|
36 |
)
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
def remove_bg(image: np.ndarray) -> np.ndarray:
|
41 |
image = Image.fromarray(image)
|
|
|
321 |
|
322 |
|
323 |
def predict(image, offset_inches):
|
324 |
+
|
|
|
|
|
|
|
|
|
|
|
325 |
# Detect the scaling reference square
|
326 |
try:
|
327 |
+
reference_obj_img, scaling_box_coords = detect_reference_square(image)
|
328 |
except:
|
329 |
+
raise gr.Error("Unable to DETECT COIN, please take another picture with different magnification level!")
|
330 |
|
331 |
# reference_obj_img_scaled = shrink_bbox(reference_obj_img, 1.2)
|
332 |
# make the image sqaure so it does not effect the size of objects
|
|
|
348 |
scaling_factor = 1.0
|
349 |
|
350 |
# Save original size before `remove_bg` processing
|
351 |
+
orig_size = image.shape[:2]
|
352 |
# Generate foreground mask and save its size
|
353 |
+
objects_mask = remove_bg(image)
|
354 |
|
355 |
processed_size = objects_mask.shape[:2]
|
356 |
# Exclude scaling box region from objects mask
|
|
|
362 |
expansion_factor=3.0,
|
363 |
)
|
364 |
objects_mask = resize_img(
|
365 |
+
objects_mask, (image.shape[1], image.shape[0])
|
366 |
)
|
367 |
offset_pixels = (offset_inches / scaling_factor) * 2 + 1
|
368 |
dilated_mask = cv2.dilate(
|