Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -36,23 +36,6 @@ transform_image = transforms.Compose(
|
|
| 36 |
)
|
| 37 |
|
| 38 |
|
| 39 |
-
def yolo_detect(
|
| 40 |
-
image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor],
|
| 41 |
-
classes: List[str],
|
| 42 |
-
) -> np.ndarray:
|
| 43 |
-
drawer_detector = YOLOWorld("yolov8x-worldv2.pt")
|
| 44 |
-
drawer_detector.set_classes(classes)
|
| 45 |
-
results: List[Results] = drawer_detector.predict(image)
|
| 46 |
-
boxes = []
|
| 47 |
-
for result in results:
|
| 48 |
-
boxes.append(
|
| 49 |
-
save_one_box(result.cpu().boxes.xyxy, im=result.orig_img, save=False)
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
del drawer_detector
|
| 53 |
-
|
| 54 |
-
return boxes[0]
|
| 55 |
-
|
| 56 |
|
| 57 |
def remove_bg(image: np.ndarray) -> np.ndarray:
|
| 58 |
image = Image.fromarray(image)
|
|
@@ -338,17 +321,12 @@ def resize_img(img: np.ndarray, resize_dim):
|
|
| 338 |
|
| 339 |
|
| 340 |
def predict(image, offset_inches):
|
| 341 |
-
|
| 342 |
-
drawer_img = yolo_detect(image, ["box"])
|
| 343 |
-
shrunked_img = make_square(shrink_bbox(drawer_img, 0.8))
|
| 344 |
-
except:
|
| 345 |
-
raise gr.Error("Unable to DETECT DRAWER, please take another picture with different magnification level!")
|
| 346 |
-
|
| 347 |
# Detect the scaling reference square
|
| 348 |
try:
|
| 349 |
-
reference_obj_img, scaling_box_coords = detect_reference_square(
|
| 350 |
except:
|
| 351 |
-
raise gr.Error("Unable to DETECT
|
| 352 |
|
| 353 |
# reference_obj_img_scaled = shrink_bbox(reference_obj_img, 1.2)
|
| 354 |
# make the image sqaure so it does not effect the size of objects
|
|
@@ -370,9 +348,9 @@ def predict(image, offset_inches):
|
|
| 370 |
scaling_factor = 1.0
|
| 371 |
|
| 372 |
# Save original size before `remove_bg` processing
|
| 373 |
-
orig_size =
|
| 374 |
# Generate foreground mask and save its size
|
| 375 |
-
objects_mask = remove_bg(
|
| 376 |
|
| 377 |
processed_size = objects_mask.shape[:2]
|
| 378 |
# Exclude scaling box region from objects mask
|
|
@@ -384,7 +362,7 @@ def predict(image, offset_inches):
|
|
| 384 |
expansion_factor=3.0,
|
| 385 |
)
|
| 386 |
objects_mask = resize_img(
|
| 387 |
-
objects_mask, (
|
| 388 |
)
|
| 389 |
offset_pixels = (offset_inches / scaling_factor) * 2 + 1
|
| 390 |
dilated_mask = cv2.dilate(
|
|
|
|
| 36 |
)
|
| 37 |
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
def remove_bg(image: np.ndarray) -> np.ndarray:
|
| 41 |
image = Image.fromarray(image)
|
|
|
|
| 321 |
|
| 322 |
|
| 323 |
def predict(image, offset_inches):
|
| 324 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
# Detect the scaling reference square
|
| 326 |
try:
|
| 327 |
+
reference_obj_img, scaling_box_coords = detect_reference_square(image)
|
| 328 |
except:
|
| 329 |
+
raise gr.Error("Unable to DETECT COIN, please take another picture with different magnification level!")
|
| 330 |
|
| 331 |
# reference_obj_img_scaled = shrink_bbox(reference_obj_img, 1.2)
|
| 332 |
# make the image sqaure so it does not effect the size of objects
|
|
|
|
| 348 |
scaling_factor = 1.0
|
| 349 |
|
| 350 |
# Save original size before `remove_bg` processing
|
| 351 |
+
orig_size = image.shape[:2]
|
| 352 |
# Generate foreground mask and save its size
|
| 353 |
+
objects_mask = remove_bg(image)
|
| 354 |
|
| 355 |
processed_size = objects_mask.shape[:2]
|
| 356 |
# Exclude scaling box region from objects mask
|
|
|
|
| 362 |
expansion_factor=3.0,
|
| 363 |
)
|
| 364 |
objects_mask = resize_img(
|
| 365 |
+
objects_mask, (image.shape[1], image.shape[0])
|
| 366 |
)
|
| 367 |
offset_pixels = (offset_inches / scaling_factor) * 2 + 1
|
| 368 |
dilated_mask = cv2.dilate(
|