Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ from sahi import AutoDetectionModel
|
|
6 |
from sahi.predict import get_sliced_prediction
|
7 |
from pathlib import Path
|
8 |
|
|
|
9 |
detection_model = AutoDetectionModel.from_pretrained(
|
10 |
model_type='ultralytics',
|
11 |
model_path="./DDR.pt", # Replace with your model path
|
@@ -16,7 +17,17 @@ detection_model = AutoDetectionModel.from_pretrained(
|
|
16 |
OUTPUT_PATH = "./pred_image.jpg"
|
17 |
TEMP_PNG_PATH = "./pred_image.png"
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def run_inference(image):
|
|
|
20 |
result = get_sliced_prediction(
|
21 |
image,
|
22 |
detection_model,
|
@@ -26,16 +37,17 @@ def run_inference(image):
|
|
26 |
overlap_width_ratio=0.2
|
27 |
)
|
28 |
|
|
|
29 |
result.export_visuals(export_dir=Path(TEMP_PNG_PATH).parent, file_name=Path(TEMP_PNG_PATH).name)
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
if not Path(TEMP_PNG_PATH).exists():
|
34 |
raise FileNotFoundError(f"SAHI did not save the PNG file at {TEMP_PNG_PATH}")
|
35 |
|
|
|
36 |
processed_image = cv2.imread(TEMP_PNG_PATH)
|
37 |
cv2.imwrite(OUTPUT_PATH, processed_image)
|
38 |
-
Path(TEMP_PNG_PATH).unlink()
|
39 |
|
40 |
return OUTPUT_PATH
|
41 |
|
@@ -44,7 +56,7 @@ demo = gr.Interface(
|
|
44 |
inputs=gr.Image(type="numpy"),
|
45 |
outputs=gr.Image(type="filepath"),
|
46 |
title="YOLO11 Object Detection",
|
47 |
-
description="Upload
|
48 |
)
|
49 |
|
50 |
-
demo.launch()
|
|
|
6 |
from sahi.predict import get_sliced_prediction
|
7 |
from pathlib import Path
|
8 |
|
9 |
+
# Load the detection model
|
10 |
detection_model = AutoDetectionModel.from_pretrained(
|
11 |
model_type='ultralytics',
|
12 |
model_path="./DDR.pt", # Replace with your model path
|
|
|
17 |
OUTPUT_PATH = "./pred_image.jpg"
|
18 |
TEMP_PNG_PATH = "./pred_image.png"
|
19 |
|
20 |
+
def wait_for_file(file_path, timeout=10):
|
21 |
+
"""Poll for the file to exist until the timeout (in seconds) is reached."""
|
22 |
+
start_time = time.time()
|
23 |
+
while not Path(file_path).exists():
|
24 |
+
if time.time() - start_time > timeout:
|
25 |
+
return False
|
26 |
+
time.sleep(0.5)
|
27 |
+
return True
|
28 |
+
|
29 |
def run_inference(image):
|
30 |
+
# Perform sliced prediction on the input image.
|
31 |
result = get_sliced_prediction(
|
32 |
image,
|
33 |
detection_model,
|
|
|
37 |
overlap_width_ratio=0.2
|
38 |
)
|
39 |
|
40 |
+
# Export visualization to a temporary PNG file.
|
41 |
result.export_visuals(export_dir=Path(TEMP_PNG_PATH).parent, file_name=Path(TEMP_PNG_PATH).name)
|
42 |
|
43 |
+
# Wait for the PNG file to be created.
|
44 |
+
if not wait_for_file(TEMP_PNG_PATH, timeout=10):
|
|
|
45 |
raise FileNotFoundError(f"SAHI did not save the PNG file at {TEMP_PNG_PATH}")
|
46 |
|
47 |
+
# Read the PNG image, convert it to JPG, and remove the temporary file.
|
48 |
processed_image = cv2.imread(TEMP_PNG_PATH)
|
49 |
cv2.imwrite(OUTPUT_PATH, processed_image)
|
50 |
+
Path(TEMP_PNG_PATH).unlink() # Delete the temporary PNG
|
51 |
|
52 |
return OUTPUT_PATH
|
53 |
|
|
|
56 |
inputs=gr.Image(type="numpy"),
|
57 |
outputs=gr.Image(type="filepath"),
|
58 |
title="YOLO11 Object Detection",
|
59 |
+
description="Upload an image to run inference using YOLO11"
|
60 |
)
|
61 |
|
62 |
+
demo.launch(share=True)
|