Spaces:
Running
Running
File size: 25,338 Bytes
f32744f 747e504 f32744f 747e504 f32744f 747e504 f32744f 747e504 f32744f 747e504 f32744f 747e504 62a0b65 747e504 f32744f 747e504 f32744f 747e504 f32744f 9367a13 f32744f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
from __future__ import annotations
import os
import gc
import base64
import io
import time
import shutil
import numpy as np
import torch
import cv2
import ezdxf
import gradio as gr
from PIL import Image, ImageEnhance
from pathlib import Path
from typing import List, Union
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from scalingtestupdated import calculate_scaling_factor
from shapely.geometry import Polygon, Point, MultiPolygon
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
from u2net import U2NETP
# ---------------------
# Create a cache folder for models
# ---------------------
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
os.makedirs(CACHE_DIR, exist_ok=True)
# ---------------------
# Custom Exceptions
# ---------------------
class DrawerNotDetectedError(Exception):
"""Raised when the drawer cannot be detected in the image"""
pass
class ReferenceBoxNotDetectedError(Exception):
"""Raised when the reference box cannot be detected in the image"""
pass
# ---------------------
# Global Model Initialization with caching and print statements
# ---------------------
print("Loading YOLOWorld model...")
start_time = time.time()
yolo_model_path = os.path.join(CACHE_DIR, "yolov8x-worldv2.pt")
if not os.path.exists(yolo_model_path):
print("Caching YOLOWorld model to", yolo_model_path)
shutil.copy("yolov8x-worldv2.pt", yolo_model_path)
drawer_detector_global = YOLOWorld(yolo_model_path)
drawer_detector_global.set_classes(["box"])
print("YOLOWorld model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading YOLO reference model...")
start_time = time.time()
reference_model_path = os.path.join(CACHE_DIR, "last.pt")
if not os.path.exists(reference_model_path):
print("Caching YOLO reference model to", reference_model_path)
shutil.copy("last.pt", reference_model_path)
reference_detector_global = YOLO(reference_model_path)
print("YOLO reference model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading U²-Net model for reference background removal (U2NETP)...")
start_time = time.time()
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
if not os.path.exists(u2net_model_path):
print("Caching U²-Net model to", u2net_model_path)
shutil.copy("u2netp.pth", u2net_model_path)
u2net_global = U2NETP(3, 1)
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
device = "cpu"
u2net_global.to(device)
u2net_global.eval()
print("U²-Net model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading BiRefNet model...")
start_time = time.time()
birefnet_global = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)
torch.set_float32_matmul_precision("high")
birefnet_global.to(device)
birefnet_global.eval()
print("BiRefNet model loaded in {:.2f} seconds".format(time.time() - start_time))
# Define transform for BiRefNet
transform_image_global = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# ---------------------
# Model Reload Function (if needed)
# ---------------------
def unload_and_reload_models():
global drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
print("Reloading models...")
start_time = time.time()
del drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
new_drawer_detector = YOLOWorld(os.path.join(CACHE_DIR, "yolov8x-worldv2.pt"))
new_drawer_detector.set_classes(["box"])
new_reference_detector = YOLO(os.path.join(CACHE_DIR, "last.pt"))
new_birefnet = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)
new_birefnet.to(device)
new_birefnet.eval()
new_u2net = U2NETP(3, 1)
new_u2net.load_state_dict(torch.load(os.path.join(CACHE_DIR, "u2netp.pth"), map_location="cpu"))
new_u2net.to(device)
new_u2net.eval()
drawer_detector_global = new_drawer_detector
reference_detector_global = new_reference_detector
birefnet_global = new_birefnet
u2net_global = new_u2net
print("Models reloaded in {:.2f} seconds".format(time.time() - start_time))
# ---------------------
# Helper Function: resize_img (defined once)
# ---------------------
def resize_img(img: np.ndarray, resize_dim):
return np.array(Image.fromarray(img).resize(resize_dim))
# ---------------------
# Other Helper Functions for Detection & Processing
# ---------------------
def yolo_detect(image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor]) -> np.ndarray:
t = time.time()
results: List[Results] = drawer_detector_global.predict(image)
if not results or len(results) == 0 or len(results[0].boxes) == 0:
raise DrawerNotDetectedError("Drawer not detected in the image.")
print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
return save_one_box(results[0].cpu().boxes.xyxy, im=results[0].orig_img, save=False)
def detect_reference_square(img: np.ndarray):
t = time.time()
res = reference_detector_global.predict(img, conf=0.45)
if not res or len(res) == 0 or len(res[0].boxes) == 0:
raise ReferenceBoxNotDetectedError("Reference box not detected in the image.")
print("Reference detection completed in {:.2f} seconds".format(time.time() - t))
return (
save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False),
res[0].cpu().boxes.xyxy[0]
)
# Use U2NETP for reference background removal.
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
t = time.time()
image_pil = Image.fromarray(image)
transform_u2netp = transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to("cpu")
with torch.no_grad():
outputs = u2net_global(input_tensor)
pred = outputs[0]
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
pred_np = pred.squeeze().cpu().numpy()
pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
pred_np = (pred_np * 255).astype(np.uint8)
print("U2NETP background removal completed in {:.2f} seconds".format(time.time() - t))
return pred_np
# Use BiRefNet for main object background removal.
def remove_bg(image: np.ndarray) -> np.ndarray:
t = time.time()
image_pil = Image.fromarray(image)
input_images = transform_image_global(image_pil).unsqueeze(0).to("cpu")
with torch.no_grad():
preds = birefnet_global(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
scale_ratio = 1024 / max(image_pil.size)
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
result = np.array(pred_pil.resize(scaled_size))
print("BiRefNet background removal completed in {:.2f} seconds".format(time.time() - t))
return result
def make_square(img: np.ndarray):
height, width = img.shape[:2]
max_dim = max(height, width)
pad_height = (max_dim - height) // 2
pad_width = (max_dim - width) // 2
pad_height_extra = max_dim - height - 2 * pad_height
pad_width_extra = max_dim - width - 2 * pad_width
if len(img.shape) == 3:
padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
(0, 0)), mode="edge")
else:
padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra)), mode="edge")
return padded
def shrink_bbox(image: np.ndarray, shrink_factor: float):
height, width = image.shape[:2]
center_x, center_y = width // 2, height // 2
new_width = int(width * shrink_factor)
new_height = int(height * shrink_factor)
x1 = max(center_x - new_width // 2, 0)
y1 = max(center_y - new_height // 2, 0)
x2 = min(center_x + new_width // 2, width)
y2 = min(center_y + new_height // 2, height)
return image[y1:y2, x1:x2]
def exclude_scaling_box(image: np.ndarray, bbox: np.ndarray, orig_size: tuple, processed_size: tuple, expansion_factor: float = 1.2) -> np.ndarray:
x_min, y_min, x_max, y_max = map(int, bbox)
scale_x = processed_size[1] / orig_size[1]
scale_y = processed_size[0] / orig_size[0]
x_min = int(x_min * scale_x)
x_max = int(x_max * scale_x)
y_min = int(y_min * scale_y)
y_max = int(y_max * scale_y)
box_width = x_max - x_min
box_height = y_max - y_min
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
expanded_x_max = min(image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2))
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
expanded_y_max = min(image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2))
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
return image
def resample_contour(contour):
num_points = 1000
smoothing_factor = 5
spline_degree = 3
if len(contour) < spline_degree + 1:
raise ValueError(f"Contour must have at least {spline_degree + 1} points, but has {len(contour)} points.")
contour = contour[:, 0, :]
tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
u = np.linspace(0, 1, num_points)
resampled_points = splev(u, tck)
smoothed_x = gaussian_filter1d(resampled_points[0], sigma=1)
smoothed_y = gaussian_filter1d(resampled_points[1], sigma=1)
return np.array([smoothed_x, smoothed_y]).T
# ---------------------
# Add the missing extract_outlines function
# ---------------------
def extract_outlines(binary_image: np.ndarray) -> (np.ndarray, list):
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
outline_image = np.zeros_like(binary_image)
cv2.drawContours(outline_image, contours, -1, (255), thickness=2)
return cv2.bitwise_not(outline_image), contours
# ---------------------
# Functions for Finger Cut Clearance
# ---------------------
def union_tool_and_circle(tool_polygon: Polygon, center_inch, circle_diameter=1.0):
radius = circle_diameter / 2.0
circle_poly = Point(center_inch).buffer(radius, resolution=64)
union_poly = tool_polygon.union(circle_poly)
return union_poly
def build_tool_polygon(points_inch):
return Polygon(points_inch)
def polygon_to_exterior_coords(poly: Polygon):
if poly.geom_type == "MultiPolygon":
biggest = max(poly.geoms, key=lambda g: g.area)
poly = biggest
if not poly.exterior:
return []
return list(poly.exterior.coords)
def place_finger_cut_randomly(tool_polygon, points_inch, existing_centers, all_polygons, circle_diameter=1.0, min_gap=0.25, max_attempts=30):
import random
needed_center_distance = circle_diameter + min_gap
radius = circle_diameter / 2.0
for _ in range(max_attempts):
idx = random.randint(0, len(points_inch) - 1)
cx, cy = points_inch[idx]
too_close = False
for (ex_x, ex_y) in existing_centers:
if np.hypot(cx - ex_x, cy - ex_y) < needed_center_distance:
too_close = True
break
if too_close:
continue
circle_poly = Point((cx, cy)).buffer(radius, resolution=64)
union_poly = tool_polygon.union(circle_poly)
overlap_with_others = False
too_close_to_others = False
for poly in all_polygons:
if union_poly.intersects(poly):
overlap_with_others = True
break
if circle_poly.buffer(min_gap).intersects(poly):
too_close_to_others = True
break
if overlap_with_others or too_close_to_others:
continue
existing_centers.append((cx, cy))
return union_poly, (cx, cy)
print("Warning: Could not place a finger cut circle meeting all spacing requirements.")
return None, None
# ---------------------
# DXF Spline and Boundary Functions
# ---------------------
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
degree = 3
closed = True
doc = ezdxf.new(units=0)
doc.units = ezdxf.units.IN
doc.header["$INSUNITS"] = ezdxf.units.IN
msp = doc.modelspace()
finger_cut_centers = []
final_polygons_inch = []
for contour in inflated_contours:
try:
resampled_contour = resample_contour(contour)
points_inch = [(x * scaling_factor, (height - y) * scaling_factor) for x, y in resampled_contour]
if len(points_inch) < 3:
continue
if np.linalg.norm(np.array(points_inch[0]) - np.array(points_inch[-1])) > 1e-2:
points_inch.append(points_inch[0])
tool_polygon = build_tool_polygon(points_inch)
if finger_clearance:
union_poly, center = place_finger_cut_randomly(tool_polygon, points_inch, finger_cut_centers, final_polygons_inch, circle_diameter=1.0, min_gap=0.25, max_attempts=30)
if union_poly is not None:
tool_polygon = union_poly
exterior_coords = polygon_to_exterior_coords(tool_polygon)
if len(exterior_coords) < 3:
continue
msp.add_spline(exterior_coords, degree=degree, dxfattribs={"layer": "TOOLS"})
final_polygons_inch.append(tool_polygon)
except ValueError as e:
print(f"Skipping contour: {e}")
return doc, final_polygons_inch
def add_rectangular_boundary(doc, polygons_inch, boundary_length, boundary_width, boundary_unit):
msp = doc.modelspace()
if boundary_unit == "mm":
boundary_length_in = boundary_length / 25.4
boundary_width_in = boundary_width / 25.4
else:
boundary_length_in = boundary_length
boundary_width_in = boundary_width
min_x = float("inf")
min_y = float("inf")
max_x = -float("inf")
max_y = -float("inf")
for poly in polygons_inch:
b = poly.bounds
min_x = min(min_x, b[0])
min_y = min(min_y, b[1])
max_x = max(max_x, b[2])
max_y = max(max_y, b[3])
if min_x == float("inf"):
print("No tool polygons found, skipping boundary.")
return None
shape_cx = (min_x + max_x) / 2
shape_cy = (min_y + max_y) / 2
half_w = boundary_width_in / 2.0
half_l = boundary_length_in / 2.0
left = shape_cx - half_w
right = shape_cx + half_w
bottom = shape_cy - half_l
top = shape_cy + half_l
rect_coords = [(left, bottom), (right, bottom), (right, top), (left, top), (left, bottom)]
from shapely.geometry import Polygon as ShapelyPolygon
boundary_polygon = ShapelyPolygon(rect_coords)
msp.add_lwpolyline(rect_coords, close=True, dxfattribs={"layer": "BOUNDARY"})
return boundary_polygon
def draw_polygons_inch(polygons_inch, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
for poly in polygons_inch:
if poly.geom_type == "MultiPolygon":
for subpoly in poly.geoms:
draw_single_polygon(subpoly, image_rgb, scaling_factor, image_height, color, thickness)
else:
draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color, thickness)
def draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
ext = list(poly.exterior.coords)
if len(ext) < 3:
return
pts_px = []
for (x_in, y_in) in ext:
px = int(x_in / scaling_factor)
py = int(image_height - (y_in / scaling_factor))
pts_px.append([px, py])
pts_px = np.array(pts_px, dtype=np.int32)
cv2.polylines(image_rgb, [pts_px], isClosed=True, color=color, thickness=thickness, lineType=cv2.LINE_AA)
# ---------------------
# Main Predict Function with Finger Cut Clearance, Boundary Box, Annotation and Sharpness Enhancement
# ---------------------
def predict(
image: Union[str, bytes, np.ndarray],
offset_inches: float,
finger_clearance: str, # "Yes" or "No"
add_boundary: str, # "Yes" or "No"
boundary_length: float,
boundary_width: float,
boundary_unit: str,
annotation_text: str
):
overall_start = time.time()
# Convert image to NumPy array if needed.
if isinstance(image, str):
if os.path.exists(image):
image = np.array(Image.open(image).convert("RGB"))
else:
try:
image = np.array(Image.open(io.BytesIO(base64.b64decode(image))).convert("RGB"))
except Exception:
raise ValueError("Invalid base64 image data")
# Apply sharpness enhancement if image is a NumPy array.
if isinstance(image, np.ndarray):
pil_image = Image.fromarray(image)
enhanced_image = ImageEnhance.Sharpness(pil_image).enhance(1.5)
image = np.array(enhanced_image)
try:
t = time.time()
drawer_img = yolo_detect(image)
print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
t = time.time()
shrunked_img = make_square(shrink_bbox(drawer_img, 0.90))
del drawer_img
gc.collect()
print("Image shrinking completed in {:.2f} seconds".format(time.time() - t))
except DrawerNotDetectedError:
raise DrawerNotDetectedError("Drawer not detected! Please take another picture with a drawer.")
try:
t = time.time()
reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img)
print("Reference square detection completed in {:.2f} seconds".format(time.time() - t))
except ReferenceBoxNotDetectedError:
raise ReferenceBoxNotDetectedError("Reference box not detected! Please take another picture with a reference box.")
t = time.time()
reference_obj_img = make_square(reference_obj_img)
reference_square_mask = remove_bg_u2netp(reference_obj_img)
print("Reference image processing completed in {:.2f} seconds".format(time.time() - t))
t = time.time()
try:
cv2.imwrite("mask.jpg", cv2.cvtColor(reference_obj_img, cv2.COLOR_RGB2GRAY))
scaling_factor = calculate_scaling_factor(
reference_image_path="./Reference_ScalingBox.jpg",
target_image=reference_square_mask,
feature_detector="ORB",
)
except ZeroDivisionError:
scaling_factor = None
print("Error calculating scaling factor: Division by zero")
except Exception as e:
scaling_factor = None
print(f"Error calculating scaling factor: {e}")
if scaling_factor is None or scaling_factor == 0:
scaling_factor = 1.0
print("Using default scaling factor of 1.0 due to calculation error")
gc.collect()
print("Scaling factor determined: {}".format(scaling_factor))
t = time.time()
orig_size = shrunked_img.shape[:2]
objects_mask = remove_bg(shrunked_img)
processed_size = objects_mask.shape[:2]
objects_mask = exclude_scaling_box(objects_mask, scaling_box_coords, orig_size, processed_size, expansion_factor=1.2)
objects_mask = resize_img(objects_mask, (shrunked_img.shape[1], shrunked_img.shape[0]))
del scaling_box_coords
gc.collect()
print("Object masking completed in {:.2f} seconds".format(time.time() - t))
t = time.time()
offset_pixels = (offset_inches / scaling_factor) * 2 + 1 if scaling_factor != 0 else 1
dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
del objects_mask
gc.collect()
print("Mask dilation completed in {:.2f} seconds".format(time.time() - t))
# Save the dilated mask for debugging if needed.
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
# --- Extract outlines (only used for DXF generation) ---
t = time.time()
outlines, contours = extract_outlines(dilated_mask)
print("Outline extraction completed in {:.2f} seconds".format(time.time() - t))
# Instead of drawing the original contours, we now prepare a clean copy of the shrunk image for drawing new contours.
output_img = shrunked_img.copy()
del shrunked_img
gc.collect()
# --- Generate DXF using the extracted contours and apply finger clearance ---
t = time.time()
use_finger_clearance = True if finger_clearance.lower() == "yes" else False
doc, final_polygons_inch = save_dxf_spline(contours, scaling_factor, processed_size[0], finger_clearance=use_finger_clearance)
del contours
gc.collect()
print("DXF generation completed in {:.2f} seconds".format(time.time() - t))
boundary_polygon = None
if add_boundary.lower() == "yes":
boundary_polygon = add_rectangular_boundary(doc, final_polygons_inch, boundary_length, boundary_width, boundary_unit)
if boundary_polygon is not None:
final_polygons_inch.append(boundary_polygon)
# --- Annotation Text Placement (Centered horizontally) ---
min_x = float("inf")
min_y = float("inf")
max_x = -float("inf")
max_y = -float("inf")
for poly in final_polygons_inch:
b = poly.bounds
if b[0] < min_x:
min_x = b[0]
if b[1] < min_y:
min_y = b[1]
if b[2] > max_x:
max_x = b[2]
if b[3] > max_y:
max_y = b[3]
margin = 0.5
text_x = (min_x + max_x) / 2
text_y = min_y - margin
msp = doc.modelspace()
if annotation_text.strip():
text_entity = msp.add_text(
annotation_text.strip(),
dxfattribs={
"height": 0.25,
"layer": "ANNOTATION"
}
)
text_entity.dxf.insert = (text_x, text_y)
dxf_filepath = os.path.join("./outputs", "out.dxf")
doc.saveas(dxf_filepath)
# --- Draw only the new contours (final_polygons_inch) on the clean output image ---
draw_polygons_inch(final_polygons_inch, output_img, scaling_factor, processed_size[0], color=(0,0,255), thickness=2)
# Also prepare an "Outlines" image based on a blank canvas for clarity.
new_outlines = np.ones_like(output_img) * 255
draw_polygons_inch(final_polygons_inch, new_outlines, scaling_factor, processed_size[0], color=(0,0,255), thickness=2)
if annotation_text.strip():
text_px = int(text_x / scaling_factor)
text_py = int(processed_size[0] - (text_y / scaling_factor))
cv2.putText(output_img, annotation_text.strip(), (text_px, text_py), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2, cv2.LINE_AA)
cv2.putText(new_outlines, annotation_text.strip(), (text_px, text_py), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2, cv2.LINE_AA)
outlines_color = cv2.cvtColor(new_outlines, cv2.COLOR_BGR2RGB)
print("Total prediction time: {:.2f} seconds".format(time.time() - overall_start))
return (
cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB),
outlines_color,
dxf_filepath,
dilated_mask,
str(scaling_factor)
)
# ---------------------
# Gradio Interface
# ---------------------
if __name__ == "__main__":
os.makedirs("./outputs", exist_ok=True)
def gradio_predict(img, offset, finger_clearance, add_boundary, boundary_length, boundary_width, boundary_unit, annotation_text):
return predict(img, offset, finger_clearance, add_boundary, boundary_length, boundary_width, boundary_unit, annotation_text)
iface = gr.Interface(
fn=gradio_predict,
inputs=[
gr.Image(label="Input Image"),
gr.Number(label="Offset value for Mask (inches)", value=0.075),
gr.Dropdown(label="Add Finger Clearance?", choices=["Yes", "No"], value="No"),
gr.Dropdown(label="Add Rectangular Boundary?", choices=["Yes", "No"], value="No"),
gr.Number(label="Boundary Length", value=300.0, precision=2),
gr.Number(label="Boundary Width", value=200.0, precision=2),
gr.Dropdown(label="Boundary Unit", choices=["mm", "inches"], value="mm"),
gr.Textbox(label="Annotation (max 20 chars)", max_length=20, placeholder="Type up to 20 characters")
],
outputs=[
gr.Image(label="Output Image"),
gr.Image(label="Outlines of Objects"),
gr.File(label="DXF file"),
gr.Image(label="Mask"),
gr.Textbox(label="Scaling Factor (inches/pixel)")
],
examples=[
["./Test20.jpg", 0.075, "No", "No", 300.0, 200.0, "mm", "MyTool"],
["./Test21.jpg", 0.075, "Yes", "Yes", 300.0, 200.0, "mm", "Tool2"]
]
)
iface.launch(share=True) |