File size: 25,338 Bytes
f32744f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
747e504
f32744f
747e504
f32744f
 
747e504
 
 
f32744f
 
747e504
f32744f
 
 
 
 
 
 
 
 
 
 
747e504
f32744f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
747e504
 
 
62a0b65
747e504
f32744f
 
 
747e504
 
 
f32744f
 
747e504
f32744f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9367a13
 
f32744f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
from __future__ import annotations
import os
import gc
import base64
import io
import time
import shutil
import numpy as np
import torch
import cv2
import ezdxf
import gradio as gr
from PIL import Image, ImageEnhance
from pathlib import Path
from typing import List, Union
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from scalingtestupdated import calculate_scaling_factor
from shapely.geometry import Polygon, Point, MultiPolygon
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
from u2net import U2NETP

# ---------------------
# Create a cache folder for models
# ---------------------
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
os.makedirs(CACHE_DIR, exist_ok=True)

# ---------------------
# Custom Exceptions
# ---------------------
class DrawerNotDetectedError(Exception):
    """Raised when the drawer cannot be detected in the image"""
    pass

class ReferenceBoxNotDetectedError(Exception):
    """Raised when the reference box cannot be detected in the image"""
    pass

# ---------------------
# Global Model Initialization with caching and print statements
# ---------------------
print("Loading YOLOWorld model...")
start_time = time.time()
yolo_model_path = os.path.join(CACHE_DIR, "yolov8x-worldv2.pt")
if not os.path.exists(yolo_model_path):
    print("Caching YOLOWorld model to", yolo_model_path)
    shutil.copy("yolov8x-worldv2.pt", yolo_model_path)
drawer_detector_global = YOLOWorld(yolo_model_path)
drawer_detector_global.set_classes(["box"])
print("YOLOWorld model loaded in {:.2f} seconds".format(time.time() - start_time))

print("Loading YOLO reference model...")
start_time = time.time()
reference_model_path = os.path.join(CACHE_DIR, "last.pt")
if not os.path.exists(reference_model_path):
    print("Caching YOLO reference model to", reference_model_path)
    shutil.copy("last.pt", reference_model_path)
reference_detector_global = YOLO(reference_model_path)
print("YOLO reference model loaded in {:.2f} seconds".format(time.time() - start_time))

print("Loading U²-Net model for reference background removal (U2NETP)...")
start_time = time.time()
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
if not os.path.exists(u2net_model_path):
    print("Caching U²-Net model to", u2net_model_path)
    shutil.copy("u2netp.pth", u2net_model_path)
u2net_global = U2NETP(3, 1)
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
device = "cpu"
u2net_global.to(device)
u2net_global.eval()
print("U²-Net model loaded in {:.2f} seconds".format(time.time() - start_time))

print("Loading BiRefNet model...")
start_time = time.time()
birefnet_global = AutoModelForImageSegmentation.from_pretrained(
    "zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)
torch.set_float32_matmul_precision("high")
birefnet_global.to(device)
birefnet_global.eval()
print("BiRefNet model loaded in {:.2f} seconds".format(time.time() - start_time))

# Define transform for BiRefNet
transform_image_global = transforms.Compose([
    transforms.Resize((1024, 1024)),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])

# ---------------------
# Model Reload Function (if needed)
# ---------------------
def unload_and_reload_models():
    global drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
    print("Reloading models...")
    start_time = time.time()
    del drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()
    new_drawer_detector = YOLOWorld(os.path.join(CACHE_DIR, "yolov8x-worldv2.pt"))
    new_drawer_detector.set_classes(["box"])
    new_reference_detector = YOLO(os.path.join(CACHE_DIR, "last.pt"))
    new_birefnet = AutoModelForImageSegmentation.from_pretrained(
        "zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
    )
    new_birefnet.to(device)
    new_birefnet.eval()
    new_u2net = U2NETP(3, 1)
    new_u2net.load_state_dict(torch.load(os.path.join(CACHE_DIR, "u2netp.pth"), map_location="cpu"))
    new_u2net.to(device)
    new_u2net.eval()
    drawer_detector_global = new_drawer_detector
    reference_detector_global = new_reference_detector
    birefnet_global = new_birefnet
    u2net_global = new_u2net
    print("Models reloaded in {:.2f} seconds".format(time.time() - start_time))

# ---------------------
# Helper Function: resize_img (defined once)
# ---------------------
def resize_img(img: np.ndarray, resize_dim):
    return np.array(Image.fromarray(img).resize(resize_dim))

# ---------------------
# Other Helper Functions for Detection & Processing
# ---------------------
def yolo_detect(image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor]) -> np.ndarray:
    t = time.time()
    results: List[Results] = drawer_detector_global.predict(image)
    if not results or len(results) == 0 or len(results[0].boxes) == 0:
        raise DrawerNotDetectedError("Drawer not detected in the image.")
    print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
    return save_one_box(results[0].cpu().boxes.xyxy, im=results[0].orig_img, save=False)

def detect_reference_square(img: np.ndarray):
    t = time.time()
    res = reference_detector_global.predict(img, conf=0.45)
    if not res or len(res) == 0 or len(res[0].boxes) == 0:
        raise ReferenceBoxNotDetectedError("Reference box not detected in the image.")
    print("Reference detection completed in {:.2f} seconds".format(time.time() - t))
    return (
        save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False),
        res[0].cpu().boxes.xyxy[0]
    )

# Use U2NETP for reference background removal.
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
    t = time.time()
    image_pil = Image.fromarray(image)
    transform_u2netp = transforms.Compose([
        transforms.Resize((320, 320)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ])
    input_tensor = transform_u2netp(image_pil).unsqueeze(0).to("cpu")
    with torch.no_grad():
        outputs = u2net_global(input_tensor)
    pred = outputs[0]
    pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
    pred_np = pred.squeeze().cpu().numpy()
    pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
    pred_np = (pred_np * 255).astype(np.uint8)
    print("U2NETP background removal completed in {:.2f} seconds".format(time.time() - t))
    return pred_np

# Use BiRefNet for main object background removal.
def remove_bg(image: np.ndarray) -> np.ndarray:
    t = time.time()
    image_pil = Image.fromarray(image)
    input_images = transform_image_global(image_pil).unsqueeze(0).to("cpu")
    with torch.no_grad():
        preds = birefnet_global(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    scale_ratio = 1024 / max(image_pil.size)
    scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
    result = np.array(pred_pil.resize(scaled_size))
    print("BiRefNet background removal completed in {:.2f} seconds".format(time.time() - t))
    return result

def make_square(img: np.ndarray):
    height, width = img.shape[:2]
    max_dim = max(height, width)
    pad_height = (max_dim - height) // 2
    pad_width = (max_dim - width) // 2
    pad_height_extra = max_dim - height - 2 * pad_height
    pad_width_extra = max_dim - width - 2 * pad_width
    if len(img.shape) == 3:
        padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
                              (pad_width, pad_width + pad_width_extra),
                              (0, 0)), mode="edge")
    else:
        padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
                              (pad_width, pad_width + pad_width_extra)), mode="edge")
    return padded

def shrink_bbox(image: np.ndarray, shrink_factor: float):
    height, width = image.shape[:2]
    center_x, center_y = width // 2, height // 2
    new_width = int(width * shrink_factor)
    new_height = int(height * shrink_factor)
    x1 = max(center_x - new_width // 2, 0)
    y1 = max(center_y - new_height // 2, 0)
    x2 = min(center_x + new_width // 2, width)
    y2 = min(center_y + new_height // 2, height)
    return image[y1:y2, x1:x2]

def exclude_scaling_box(image: np.ndarray, bbox: np.ndarray, orig_size: tuple, processed_size: tuple, expansion_factor: float = 1.2) -> np.ndarray:
    x_min, y_min, x_max, y_max = map(int, bbox)
    scale_x = processed_size[1] / orig_size[1]
    scale_y = processed_size[0] / orig_size[0]
    x_min = int(x_min * scale_x)
    x_max = int(x_max * scale_x)
    y_min = int(y_min * scale_y)
    y_max = int(y_max * scale_y)
    box_width = x_max - x_min
    box_height = y_max - y_min
    expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
    expanded_x_max = min(image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2))
    expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
    expanded_y_max = min(image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2))
    image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
    return image

def resample_contour(contour):
    num_points = 1000
    smoothing_factor = 5
    spline_degree = 3
    if len(contour) < spline_degree + 1:
        raise ValueError(f"Contour must have at least {spline_degree + 1} points, but has {len(contour)} points.")
    contour = contour[:, 0, :]
    tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
    u = np.linspace(0, 1, num_points)
    resampled_points = splev(u, tck)
    smoothed_x = gaussian_filter1d(resampled_points[0], sigma=1)
    smoothed_y = gaussian_filter1d(resampled_points[1], sigma=1)
    return np.array([smoothed_x, smoothed_y]).T

# ---------------------
# Add the missing extract_outlines function
# ---------------------
def extract_outlines(binary_image: np.ndarray) -> (np.ndarray, list):
    contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    outline_image = np.zeros_like(binary_image)
    cv2.drawContours(outline_image, contours, -1, (255), thickness=2)
    return cv2.bitwise_not(outline_image), contours

# ---------------------
# Functions for Finger Cut Clearance
# ---------------------
def union_tool_and_circle(tool_polygon: Polygon, center_inch, circle_diameter=1.0):
    radius = circle_diameter / 2.0
    circle_poly = Point(center_inch).buffer(radius, resolution=64)
    union_poly = tool_polygon.union(circle_poly)
    return union_poly

def build_tool_polygon(points_inch):
    return Polygon(points_inch)

def polygon_to_exterior_coords(poly: Polygon):
    if poly.geom_type == "MultiPolygon":
        biggest = max(poly.geoms, key=lambda g: g.area)
        poly = biggest
    if not poly.exterior:
        return []
    return list(poly.exterior.coords)

def place_finger_cut_randomly(tool_polygon, points_inch, existing_centers, all_polygons, circle_diameter=1.0, min_gap=0.25, max_attempts=30):
    import random
    needed_center_distance = circle_diameter + min_gap
    radius = circle_diameter / 2.0
    for _ in range(max_attempts):
        idx = random.randint(0, len(points_inch) - 1)
        cx, cy = points_inch[idx]
        too_close = False
        for (ex_x, ex_y) in existing_centers:
            if np.hypot(cx - ex_x, cy - ex_y) < needed_center_distance:
                too_close = True
                break
        if too_close:
            continue
        circle_poly = Point((cx, cy)).buffer(radius, resolution=64)
        union_poly = tool_polygon.union(circle_poly)
        overlap_with_others = False
        too_close_to_others = False
        for poly in all_polygons:
            if union_poly.intersects(poly):
                overlap_with_others = True
                break
            if circle_poly.buffer(min_gap).intersects(poly):
                too_close_to_others = True
                break
        if overlap_with_others or too_close_to_others:
            continue
        existing_centers.append((cx, cy))
        return union_poly, (cx, cy)
    print("Warning: Could not place a finger cut circle meeting all spacing requirements.")
    return None, None

# ---------------------
# DXF Spline and Boundary Functions
# ---------------------
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
    degree = 3
    closed = True
    doc = ezdxf.new(units=0)
    doc.units = ezdxf.units.IN
    doc.header["$INSUNITS"] = ezdxf.units.IN
    msp = doc.modelspace()
    finger_cut_centers = []
    final_polygons_inch = []
    for contour in inflated_contours:
        try:
            resampled_contour = resample_contour(contour)
            points_inch = [(x * scaling_factor, (height - y) * scaling_factor) for x, y in resampled_contour]
            if len(points_inch) < 3:
                continue
            if np.linalg.norm(np.array(points_inch[0]) - np.array(points_inch[-1])) > 1e-2:
                points_inch.append(points_inch[0])
            tool_polygon = build_tool_polygon(points_inch)
            if finger_clearance:
                union_poly, center = place_finger_cut_randomly(tool_polygon, points_inch, finger_cut_centers, final_polygons_inch, circle_diameter=1.0, min_gap=0.25, max_attempts=30)
                if union_poly is not None:
                    tool_polygon = union_poly
            exterior_coords = polygon_to_exterior_coords(tool_polygon)
            if len(exterior_coords) < 3:
                continue
            msp.add_spline(exterior_coords, degree=degree, dxfattribs={"layer": "TOOLS"})
            final_polygons_inch.append(tool_polygon)
        except ValueError as e:
            print(f"Skipping contour: {e}")
    return doc, final_polygons_inch

def add_rectangular_boundary(doc, polygons_inch, boundary_length, boundary_width, boundary_unit):
    msp = doc.modelspace()
    if boundary_unit == "mm":
        boundary_length_in = boundary_length / 25.4
        boundary_width_in = boundary_width / 25.4
    else:
        boundary_length_in = boundary_length
        boundary_width_in = boundary_width
    min_x = float("inf")
    min_y = float("inf")
    max_x = -float("inf")
    max_y = -float("inf")
    for poly in polygons_inch:
        b = poly.bounds
        min_x = min(min_x, b[0])
        min_y = min(min_y, b[1])
        max_x = max(max_x, b[2])
        max_y = max(max_y, b[3])
    if min_x == float("inf"):
        print("No tool polygons found, skipping boundary.")
        return None
    shape_cx = (min_x + max_x) / 2
    shape_cy = (min_y + max_y) / 2
    half_w = boundary_width_in / 2.0
    half_l = boundary_length_in / 2.0
    left = shape_cx - half_w
    right = shape_cx + half_w
    bottom = shape_cy - half_l
    top = shape_cy + half_l
    rect_coords = [(left, bottom), (right, bottom), (right, top), (left, top), (left, bottom)]
    from shapely.geometry import Polygon as ShapelyPolygon
    boundary_polygon = ShapelyPolygon(rect_coords)
    msp.add_lwpolyline(rect_coords, close=True, dxfattribs={"layer": "BOUNDARY"})
    return boundary_polygon

def draw_polygons_inch(polygons_inch, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
    for poly in polygons_inch:
        if poly.geom_type == "MultiPolygon":
            for subpoly in poly.geoms:
                draw_single_polygon(subpoly, image_rgb, scaling_factor, image_height, color, thickness)
        else:
            draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color, thickness)

def draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
    ext = list(poly.exterior.coords)
    if len(ext) < 3:
        return
    pts_px = []
    for (x_in, y_in) in ext:
        px = int(x_in / scaling_factor)
        py = int(image_height - (y_in / scaling_factor))
        pts_px.append([px, py])
    pts_px = np.array(pts_px, dtype=np.int32)
    cv2.polylines(image_rgb, [pts_px], isClosed=True, color=color, thickness=thickness, lineType=cv2.LINE_AA)

# ---------------------
# Main Predict Function with Finger Cut Clearance, Boundary Box, Annotation and Sharpness Enhancement
# ---------------------
def predict(
    image: Union[str, bytes, np.ndarray],
    offset_inches: float,
    finger_clearance: str,    # "Yes" or "No"
    add_boundary: str,        # "Yes" or "No"
    boundary_length: float,
    boundary_width: float,
    boundary_unit: str,
    annotation_text: str
):
    overall_start = time.time()
    # Convert image to NumPy array if needed.
    if isinstance(image, str):
        if os.path.exists(image):
            image = np.array(Image.open(image).convert("RGB"))
        else:
            try:
                image = np.array(Image.open(io.BytesIO(base64.b64decode(image))).convert("RGB"))
            except Exception:
                raise ValueError("Invalid base64 image data")
    # Apply sharpness enhancement if image is a NumPy array.
    if isinstance(image, np.ndarray):
        pil_image = Image.fromarray(image)
        enhanced_image = ImageEnhance.Sharpness(pil_image).enhance(1.5)
        image = np.array(enhanced_image)
    try:
        t = time.time()
        drawer_img = yolo_detect(image)
        print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
        t = time.time()
        shrunked_img = make_square(shrink_bbox(drawer_img, 0.90))
        del drawer_img
        gc.collect()
        print("Image shrinking completed in {:.2f} seconds".format(time.time() - t))
    except DrawerNotDetectedError:
        raise DrawerNotDetectedError("Drawer not detected! Please take another picture with a drawer.")
    try:
        t = time.time()
        reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img)
        print("Reference square detection completed in {:.2f} seconds".format(time.time() - t))
    except ReferenceBoxNotDetectedError:
        raise ReferenceBoxNotDetectedError("Reference box not detected! Please take another picture with a reference box.")
    t = time.time()
    reference_obj_img = make_square(reference_obj_img)
    reference_square_mask = remove_bg_u2netp(reference_obj_img)
    print("Reference image processing completed in {:.2f} seconds".format(time.time() - t))
    t = time.time()
    try:
        cv2.imwrite("mask.jpg", cv2.cvtColor(reference_obj_img, cv2.COLOR_RGB2GRAY))
        scaling_factor = calculate_scaling_factor(
            reference_image_path="./Reference_ScalingBox.jpg",
            target_image=reference_square_mask,
            feature_detector="ORB",
        )
    except ZeroDivisionError:
        scaling_factor = None
        print("Error calculating scaling factor: Division by zero")
    except Exception as e:
        scaling_factor = None
        print(f"Error calculating scaling factor: {e}")
    if scaling_factor is None or scaling_factor == 0:
        scaling_factor = 1.0
        print("Using default scaling factor of 1.0 due to calculation error")
    gc.collect()
    print("Scaling factor determined: {}".format(scaling_factor))
    t = time.time()
    orig_size = shrunked_img.shape[:2]
    objects_mask = remove_bg(shrunked_img)
    processed_size = objects_mask.shape[:2]
    objects_mask = exclude_scaling_box(objects_mask, scaling_box_coords, orig_size, processed_size, expansion_factor=1.2)
    objects_mask = resize_img(objects_mask, (shrunked_img.shape[1], shrunked_img.shape[0]))
    del scaling_box_coords
    gc.collect()
    print("Object masking completed in {:.2f} seconds".format(time.time() - t))
    t = time.time()
    offset_pixels = (offset_inches / scaling_factor) * 2 + 1 if scaling_factor != 0 else 1
    dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
    del objects_mask
    gc.collect()
    print("Mask dilation completed in {:.2f} seconds".format(time.time() - t))
    # Save the dilated mask for debugging if needed.
    Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
    # --- Extract outlines (only used for DXF generation) ---
    t = time.time()
    outlines, contours = extract_outlines(dilated_mask)
    print("Outline extraction completed in {:.2f} seconds".format(time.time() - t))
    # Instead of drawing the original contours, we now prepare a clean copy of the shrunk image for drawing new contours.
    output_img = shrunked_img.copy()
    del shrunked_img
    gc.collect()
    # --- Generate DXF using the extracted contours and apply finger clearance ---
    t = time.time()
    use_finger_clearance = True if finger_clearance.lower() == "yes" else False
    doc, final_polygons_inch = save_dxf_spline(contours, scaling_factor, processed_size[0], finger_clearance=use_finger_clearance)
    del contours
    gc.collect()
    print("DXF generation completed in {:.2f} seconds".format(time.time() - t))
    boundary_polygon = None
    if add_boundary.lower() == "yes":
        boundary_polygon = add_rectangular_boundary(doc, final_polygons_inch, boundary_length, boundary_width, boundary_unit)
        if boundary_polygon is not None:
            final_polygons_inch.append(boundary_polygon)
    # --- Annotation Text Placement (Centered horizontally) ---
    min_x = float("inf")
    min_y = float("inf")
    max_x = -float("inf")
    max_y = -float("inf")
    for poly in final_polygons_inch:
        b = poly.bounds
        if b[0] < min_x:
            min_x = b[0]
        if b[1] < min_y:
            min_y = b[1]
        if b[2] > max_x:
            max_x = b[2]
        if b[3] > max_y:
            max_y = b[3]
    margin = 0.5
    text_x = (min_x + max_x) / 2
    text_y = min_y - margin
    msp = doc.modelspace()
    if annotation_text.strip():
        text_entity = msp.add_text(
            annotation_text.strip(),
            dxfattribs={
                "height": 0.25,
                "layer": "ANNOTATION"
            }
        )
        text_entity.dxf.insert = (text_x, text_y)
    dxf_filepath = os.path.join("./outputs", "out.dxf")
    doc.saveas(dxf_filepath)
    # --- Draw only the new contours (final_polygons_inch) on the clean output image ---
    draw_polygons_inch(final_polygons_inch, output_img, scaling_factor, processed_size[0], color=(0,0,255), thickness=2)
    # Also prepare an "Outlines" image based on a blank canvas for clarity.
    new_outlines = np.ones_like(output_img) * 255
    draw_polygons_inch(final_polygons_inch, new_outlines, scaling_factor, processed_size[0], color=(0,0,255), thickness=2)
    if annotation_text.strip():
        text_px = int(text_x / scaling_factor)
        text_py = int(processed_size[0] - (text_y / scaling_factor))
        cv2.putText(output_img, annotation_text.strip(), (text_px, text_py), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2, cv2.LINE_AA)
        cv2.putText(new_outlines, annotation_text.strip(), (text_px, text_py), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2, cv2.LINE_AA)
    outlines_color = cv2.cvtColor(new_outlines, cv2.COLOR_BGR2RGB)
    print("Total prediction time: {:.2f} seconds".format(time.time() - overall_start))
    return (
        cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB),
        outlines_color,
        dxf_filepath,
        dilated_mask,
        str(scaling_factor)
    )

# ---------------------
# Gradio Interface
# ---------------------
if __name__ == "__main__":
    os.makedirs("./outputs", exist_ok=True)
    def gradio_predict(img, offset, finger_clearance, add_boundary, boundary_length, boundary_width, boundary_unit, annotation_text):
        return predict(img, offset, finger_clearance, add_boundary, boundary_length, boundary_width, boundary_unit, annotation_text)
    iface = gr.Interface(
        fn=gradio_predict,
        inputs=[
            gr.Image(label="Input Image"),
            gr.Number(label="Offset value for Mask (inches)", value=0.075),
            gr.Dropdown(label="Add Finger Clearance?", choices=["Yes", "No"], value="No"),
            gr.Dropdown(label="Add Rectangular Boundary?", choices=["Yes", "No"], value="No"),
            gr.Number(label="Boundary Length", value=300.0, precision=2),
            gr.Number(label="Boundary Width", value=200.0, precision=2),
            gr.Dropdown(label="Boundary Unit", choices=["mm", "inches"], value="mm"),
            gr.Textbox(label="Annotation (max 20 chars)", max_length=20, placeholder="Type up to 20 characters")
        ],
        outputs=[
            gr.Image(label="Output Image"),
            gr.Image(label="Outlines of Objects"),
            gr.File(label="DXF file"),
            gr.Image(label="Mask"),
            gr.Textbox(label="Scaling Factor (inches/pixel)")
        ],
        examples=[
            ["./Test20.jpg", 0.075, "No", "No", 300.0, 200.0, "mm", "MyTool"],
            ["./Test21.jpg", 0.075, "Yes", "Yes", 300.0, 200.0, "mm", "Tool2"]
        ]
    )
    iface.launch(share=True)