File size: 30,288 Bytes
f32744f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
017b32e
 
 
 
 
 
 
 
f32744f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a3f8ca
f32744f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a3f8ca
f32744f
8a3f8ca
017b32e
 
 
 
 
f32744f
 
 
 
 
017b32e
8a3f8ca
f32744f
 
 
 
 
 
 
 
 
 
 
 
 
017b32e
8a3f8ca
017b32e
 
 
86c2d29
8a3f8ca
 
 
 
 
 
 
017b32e
 
8a3f8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
017b32e
86c2d29
f32744f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
017b32e
 
f32744f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c2d29
832332e
f32744f
 
832332e
 
 
3ac02eb
b87650f
86c2d29
 
 
 
f32744f
 
 
 
a13f1f1
 
 
 
 
 
 
 
86c2d29
 
 
 
f32744f
 
 
 
a13f1f1
 
86c2d29
 
 
 
f32744f
 
 
 
86c2d29
f32744f
 
 
 
 
 
 
 
 
 
 
 
 
 
86c2d29
f32744f
 
 
 
 
86c2d29
017b32e
86c2d29
017b32e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c2d29
3a02ac9
86c2d29
 
 
 
 
 
 
017b32e
 
 
 
 
 
86c2d29
f32744f
 
 
 
86c2d29
f32744f
 
 
 
 
86c2d29
 
f32744f
 
 
 
 
 
86c2d29
f32744f
86c2d29
 
 
 
f32744f
 
747e504
86c2d29
747e504
f32744f
 
86c2d29
f32744f
 
86c2d29
 
 
f32744f
 
 
86c2d29
9193ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
86c2d29
a13f1f1
86c2d29
f32744f
 
86c2d29
8a3f8ca
 
 
 
 
 
a13f1f1
 
86c2d29
f32744f
 
86c2d29
 
 
 
f32744f
 
9193ad6
 
 
f32744f
 
 
86c2d29
017b32e
 
f32744f
 
86c2d29
 
 
f32744f
 
86c2d29
 
 
 
 
62a0b65
86c2d29
 
f32744f
8a3f8ca
9193ad6
 
 
 
86c2d29
 
 
 
 
 
8a3f8ca
86c2d29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
832332e
 
 
 
 
 
 
747e504
f32744f
86c2d29
f32744f
747e504
f32744f
 
 
 
 
 
 
 
 
 
 
017b32e
 
 
 
 
f32744f
 
 
 
017b32e
 
f32744f
 
 
 
 
 
 
 
 
 
 
 
 
 
017b32e
 
f32744f
 
86be3ef
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
from __future__ import annotations
import os
import gc
import base64
import io
import time
import shutil
import numpy as np
import torch
import cv2
import ezdxf
import gradio as gr
from PIL import Image, ImageEnhance
from pathlib import Path
from typing import List, Union
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from scalingtestupdated import calculate_scaling_factor
from shapely.geometry import Polygon, Point, MultiPolygon
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
from u2net import U2NETP

# ---------------------
# Create a cache folder for models
# ---------------------
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
os.makedirs(CACHE_DIR, exist_ok=True)

# ---------------------
# Custom Exceptions
# ---------------------
class DrawerNotDetectedError(Exception):
    """Raised when the drawer cannot be detected in the image"""
    pass

class ReferenceBoxNotDetectedError(Exception):
    """Raised when the reference box cannot be detected in the image"""
    pass

class BoundaryExceedsError(Exception):
    """Raised when the optional boundary dimensions exceed allowed image dimensions."""
    pass

class BoundaryOverlapError(Exception):
    """Raised when the optional boundary dimensions are too small and overlap with the inner contours."""
    pass

# ---------------------
# Global Model Initialization with caching and print statements
# ---------------------
print("Loading YOLOWorld model...")
start_time = time.time()
yolo_model_path = os.path.join(CACHE_DIR, "yolov8x-worldv2.pt")
if not os.path.exists(yolo_model_path):
    print("Caching YOLOWorld model to", yolo_model_path)
    shutil.copy("yolov8x-worldv2.pt", yolo_model_path)
drawer_detector_global = YOLOWorld(yolo_model_path)
drawer_detector_global.set_classes(["box"])
print("YOLOWorld model loaded in {:.2f} seconds".format(time.time() - start_time))

print("Loading YOLO reference model...")
start_time = time.time()
reference_model_path = os.path.join(CACHE_DIR, "last.pt")
if not os.path.exists(reference_model_path):
    print("Caching YOLO reference model to", reference_model_path)
    shutil.copy("last.pt", reference_model_path)
reference_detector_global = YOLO(reference_model_path)
print("YOLO reference model loaded in {:.2f} seconds".format(time.time() - start_time))

print("Loading U²-Net model for reference background removal (U2NETP)...")
start_time = time.time()
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
if not os.path.exists(u2net_model_path):
    print("Caching U²-Net model to", u2net_model_path)
    shutil.copy("u2netp.pth", u2net_model_path)
u2net_global = U2NETP(3, 1)
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
device = "cpu"
u2net_global.to(device)
u2net_global.eval()
print("U²-Net model loaded in {:.2f} seconds".format(time.time() - start_time))

print("Loading BiRefNet model...")
start_time = time.time()
birefnet_global = AutoModelForImageSegmentation.from_pretrained(
    "zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)
torch.set_float32_matmul_precision("high")
birefnet_global.to(device)
birefnet_global.eval()
print("BiRefNet model loaded in {:.2f} seconds".format(time.time() - start_time))

# Define transform for BiRefNet
transform_image_global = transforms.Compose([
    transforms.Resize((1024, 1024)),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])

# ---------------------
# Model Reload Function (if needed)
# ---------------------
def unload_and_reload_models():
    global drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
    print("Reloading models...")
    start_time = time.time()
    del drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()
    new_drawer_detector = YOLOWorld(os.path.join(CACHE_DIR, "yolov8x-worldv2.pt"))
    new_drawer_detector.set_classes(["box"])
    new_reference_detector = YOLO(os.path.join(CACHE_DIR, "last.pt"))
    new_birefnet = AutoModelForImageSegmentation.from_pretrained(
        "zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
    )
    new_birefnet.to(device)
    new_birefnet.eval()
    new_u2net = U2NETP(3, 1)
    new_u2net.load_state_dict(torch.load(os.path.join(CACHE_DIR, "u2netp.pth"), map_location="cpu"))
    new_u2net.to(device)
    new_u2net.eval()
    drawer_detector_global = new_drawer_detector
    reference_detector_global = new_reference_detector
    birefnet_global = new_birefnet
    u2net_global = new_u2net
    print("Models reloaded in {:.2f} seconds".format(time.time() - start_time))

# ---------------------
# Helper Function: resize_img (defined once)
# ---------------------
def resize_img(img: np.ndarray, resize_dim):
    return np.array(Image.fromarray(img).resize(resize_dim))

# ---------------------
# Other Helper Functions for Detection & Processing
# ---------------------
def yolo_detect(image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor]) -> np.ndarray:
    t = time.time()
    results: List[Results] = drawer_detector_global.predict(image)
    if not results or len(results) == 0 or len(results[0].boxes) == 0:
        raise DrawerNotDetectedError("Drawer not detected in the image.")
    print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
    return save_one_box(results[0].cpu().boxes.xyxy, im=results[0].orig_img, save=False)

def detect_reference_square(img: np.ndarray):
    t = time.time()
    res = reference_detector_global.predict(img, conf=0.45)
    if not res or len(res) == 0 or len(res[0].boxes) == 0:
        raise ReferenceBoxNotDetectedError("Reference box not detected in the image.")
    print("Reference detection completed in {:.2f} seconds".format(time.time() - t))
    return (
        save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False),
        res[0].cpu().boxes.xyxy[0]
    )

# Use U2NETP for reference background removal.
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
    t = time.time()
    image_pil = Image.fromarray(image)
    transform_u2netp = transforms.Compose([
        transforms.Resize((320, 320)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ])
    input_tensor = transform_u2netp(image_pil).unsqueeze(0).to("cpu")
    with torch.no_grad():
        outputs = u2net_global(input_tensor)
    pred = outputs[0]
    pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
    pred_np = pred.squeeze().cpu().numpy()
    pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
    pred_np = (pred_np * 255).astype(np.uint8)
    print("U2NETP background removal completed in {:.2f} seconds".format(time.time() - t))
    return pred_np

# Use BiRefNet for main object background removal.
def remove_bg(image: np.ndarray) -> np.ndarray:
    t = time.time()
    image_pil = Image.fromarray(image)
    input_images = transform_image_global(image_pil).unsqueeze(0).to("cpu")
    with torch.no_grad():
        preds = birefnet_global(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    scale_ratio = 1024 / max(image_pil.size)
    scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
    result = np.array(pred_pil.resize(scaled_size))
    print("BiRefNet background removal completed in {:.2f} seconds".format(time.time() - t))
    return result

def make_square(img: np.ndarray):
    height, width = img.shape[:2]
    max_dim = max(height, width)
    pad_height = (max_dim - height) // 2
    pad_width = (max_dim - width) // 2
    pad_height_extra = max_dim - height - 2 * pad_height
    pad_width_extra = max_dim - width - 2 * pad_width
    if len(img.shape) == 3:
        padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
                              (pad_width, pad_width + pad_width_extra),
                              (0, 0)), mode="edge")
    else:
        padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
                              (pad_width, pad_width + pad_width_extra)), mode="edge")
    return padded

def shrink_bbox(image: np.ndarray, shrink_factor: float):
    height, width = image.shape[:2]
    center_x, center_y = width // 2, height // 2
    new_width = int(width * shrink_factor)
    new_height = int(height * shrink_factor)
    x1 = max(center_x - new_width // 2, 0)
    y1 = max(center_y - new_height // 2, 0)
    x2 = min(center_x + new_width // 2, width)
    y2 = min(center_y + new_height // 2, height)
    return image[y1:y2, x1:x2]

def exclude_scaling_box(image: np.ndarray, bbox: np.ndarray, orig_size: tuple, processed_size: tuple, expansion_factor: float = 1.2) -> np.ndarray:
    x_min, y_min, x_max, y_max = map(int, bbox)
    scale_x = processed_size[1] / orig_size[1]
    scale_y = processed_size[0] / orig_size[0]
    x_min = int(x_min * scale_x)
    x_max = int(x_max * scale_x)
    y_min = int(y_min * scale_y)
    y_max = int(y_max * scale_y)
    box_width = x_max - x_min
    box_height = y_max - y_min
    expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
    expanded_x_max = min(image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2))
    expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
    expanded_y_max = min(image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2))
    image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
    return image

def resample_contour(contour):
    num_points = 1000
    smoothing_factor = 5
    spline_degree = 3
    if len(contour) < spline_degree + 1:
        raise ValueError(f"Contour must have at least {spline_degree + 1} points, but has {len(contour)} points.")
    contour = contour[:, 0, :]
    tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
    u = np.linspace(0, 1, num_points)
    resampled_points = splev(u, tck)
    smoothed_x = gaussian_filter1d(resampled_points[0], sigma=1)
    smoothed_y = gaussian_filter1d(resampled_points[1], sigma=1)
    return np.array([smoothed_x, smoothed_y]).T

# ---------------------
# Add the missing extract_outlines function
# ---------------------
def extract_outlines(binary_image: np.ndarray) -> (np.ndarray, list):
    contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    outline_image = np.zeros_like(binary_image)
    cv2.drawContours(outline_image, contours, -1, (255), thickness=2)
    return cv2.bitwise_not(outline_image), contours

# ---------------------
# Functions for Finger Cut Clearance
# ---------------------
def union_tool_and_circle(tool_polygon: Polygon, center_inch, circle_diameter=1.0):
    radius = circle_diameter / 2.0
    circle_poly = Point(center_inch).buffer(radius, resolution=64)
    union_poly = tool_polygon.union(circle_poly)
    return union_poly

def build_tool_polygon(points_inch):
    return Polygon(points_inch)

def polygon_to_exterior_coords(poly: Polygon):
    if poly.geom_type == "MultiPolygon":
        biggest = max(poly.geoms, key=lambda g: g.area)
        poly = biggest
    if not poly.exterior:
        return []
    return list(poly.exterior.coords)

def place_finger_cut_randomly(tool_polygon, points_inch, existing_centers, all_polygons, circle_diameter=1.0, min_gap=0.25, max_attempts=30):
    import random
    needed_center_distance = circle_diameter + min_gap
    radius = circle_diameter / 2.0
    for _ in range(max_attempts):
        idx = random.randint(0, len(points_inch) - 1)
        cx, cy = points_inch[idx]
        too_close = False
        for (ex_x, ex_y) in existing_centers:
            if np.hypot(cx - ex_x, cy - ex_y) < needed_center_distance:
                too_close = True
                break
        if too_close:
            continue
        circle_poly = Point((cx, cy)).buffer(radius, resolution=64)
        union_poly = tool_polygon.union(circle_poly)
        overlap_with_others = False
        too_close_to_others = False
        for poly in all_polygons:
            if union_poly.intersects(poly):
                overlap_with_others = True
                break
            if circle_poly.buffer(min_gap).intersects(poly):
                too_close_to_others = True
                break
        if overlap_with_others or too_close_to_others:
            continue
        existing_centers.append((cx, cy))
        return union_poly, (cx, cy)
    print("Warning: Could not place a finger cut circle meeting all spacing requirements.")
    return None, None

# ---------------------
# DXF Spline and Boundary Functions
# ---------------------
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
    degree = 3
    closed = True
    doc = ezdxf.new(units=0)
    doc.units = ezdxf.units.IN
    doc.header["$INSUNITS"] = ezdxf.units.IN
    msp = doc.modelspace()
    finger_cut_centers = []
    final_polygons_inch = []
    for contour in inflated_contours:
        try:
            resampled_contour = resample_contour(contour)
            points_inch = [(x * scaling_factor, (height - y) * scaling_factor) for x, y in resampled_contour]
            if len(points_inch) < 3:
                continue
            if np.linalg.norm(np.array(points_inch[0]) - np.array(points_inch[-1])) > 1e-2:
                points_inch.append(points_inch[0])
            tool_polygon = build_tool_polygon(points_inch)
            if finger_clearance:
                union_poly, center = place_finger_cut_randomly(tool_polygon, points_inch, finger_cut_centers, final_polygons_inch, circle_diameter=1.0, min_gap=0.25, max_attempts=30)
                if union_poly is not None:
                    tool_polygon = union_poly
            exterior_coords = polygon_to_exterior_coords(tool_polygon)
            if len(exterior_coords) < 3:
                continue
            msp.add_spline(exterior_coords, degree=degree, dxfattribs={"layer": "TOOLS"})
            final_polygons_inch.append(tool_polygon)
        except ValueError as e:
            print(f"Skipping contour: {e}")
    return doc, final_polygons_inch

def add_rectangular_boundary(doc, polygons_inch, boundary_length, boundary_width, offset_unit, annotation_text="", image_height_in=None, image_width_in=None):
    msp = doc.modelspace()
    # Convert from mm if necessary.
    if offset_unit.lower() == "mm":
        if boundary_length < 50:
            boundary_length = boundary_length * 25.4
        if boundary_width < 50:
            boundary_width = boundary_width * 25.4
        boundary_length_in = boundary_length / 25.4
        boundary_width_in = boundary_width / 25.4
    else:
        boundary_length_in = boundary_length
        boundary_width_in = boundary_width

    # Compute bounding box of inner contours.
    min_x = float("inf")
    min_y = float("inf")
    max_x = -float("inf")
    max_y = -float("inf")
    for poly in polygons_inch:
        b = poly.bounds
        min_x = min(min_x, b[0])
        min_y = min(min_y, b[1])
        max_x = max(max_x, b[2])
        max_y = max(max_y, b[3])
    if min_x == float("inf"):
        print("No tool polygons found, skipping boundary.")
        return None

    # Compute inner bounding box dimensions.
    inner_width = max_x - min_x
    inner_length = max_y - min_y

    # Set clearance margins.
    clearance_side = 0.25  # left/right clearance
    clearance_tb = 0.25    # top/bottom clearance
    if annotation_text.strip():
        clearance_tb = 0.75

    # Check if the boundary dimensions are at least larger than the inner box plus clearance.
    if boundary_width_in <= inner_width + 2 * clearance_side or boundary_length_in <= inner_length + 2 * clearance_tb:
        raise BoundaryOverlapError("Error: The specified boundary dimensions are too small and overlap with the inner contours. Please provide larger values.")

    # Check if boundary exceeds image limits (for example, 1 inch less than the image dimensions).
    if image_height_in is not None and image_width_in is not None:
        if boundary_length_in > (image_height_in - 1) or boundary_width_in > (image_width_in - 1):
            raise BoundaryExceedsError("Error: The specified boundary dimensions exceed the allowed image dimensions. Please enter smaller values.")

    # Calculate the center of the inner contours.
    center_x = (min_x + max_x) / 2
    center_y = (min_y + max_y) / 2

    # Draw rectangle centered at (center_x, center_y).
    left = center_x - boundary_width_in / 2
    right = center_x + boundary_width_in / 2
    bottom = center_y - boundary_length_in / 2
    top = center_y + boundary_length_in / 2

    rect_coords = [(left, bottom), (right, bottom), (right, top), (left, top), (left, bottom)]
    from shapely.geometry import Polygon as ShapelyPolygon
    boundary_polygon = ShapelyPolygon(rect_coords)
    msp.add_lwpolyline(rect_coords, close=True, dxfattribs={"layer": "BOUNDARY"})
    return boundary_polygon

def draw_polygons_inch(polygons_inch, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
    for poly in polygons_inch:
        if poly.geom_type == "MultiPolygon":
            for subpoly in poly.geoms:
                draw_single_polygon(subpoly, image_rgb, scaling_factor, image_height, color, thickness)
        else:
            draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color, thickness)

def draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
    ext = list(poly.exterior.coords)
    if len(ext) < 3:
        return
    pts_px = []
    for (x_in, y_in) in ext:
        px = int(x_in / scaling_factor)
        py = int(image_height - (y_in / scaling_factor))
        pts_px.append([px, py])
    pts_px = np.array(pts_px, dtype=np.int32)
    cv2.polylines(image_rgb, [pts_px], isClosed=True, color=color, thickness=thickness, lineType=cv2.LINE_AA)

# ---------------------
# Main Predict Function with Finger Cut Clearance, Boundary Box, Annotation and Sharpness Enhancement
# ---------------------
def predict(
    image: Union[str, bytes, np.ndarray],
    offset_value: float,
    offset_unit: str,         # "mm" or "inches"
    finger_clearance: str,    # "Yes" or "No"
    add_boundary: str,        # "Yes" or "No"
    boundary_length: float,
    boundary_width: float,
    annotation_text: str
):
    overall_start = time.time()
    # Convert image to NumPy array if needed.
    if isinstance(image, str):
        if os.path.exists(image):
            image = np.array(Image.open(image).convert("RGB"))
        else:
            try:
                image = np.array(Image.open(io.BytesIO(base64.b64decode(image))).convert("RGB"))
            except Exception:
                raise ValueError("Invalid base64 image data")

    # Preprocessing: reduce brightness to 0.5 and enhance sharpness.
    if isinstance(image, np.ndarray):
        pil_image = Image.fromarray(image)
        # Reduce brightness.
        dark_image = ImageEnhance.Brightness(pil_image).enhance(0.5)
        # Enhance sharpness.
        enhanced_image = ImageEnhance.Sharpness(dark_image).enhance(1)
        image = np.array(enhanced_image)

    # ---------------------
    # 1) Detect the drawer with YOLOWorld
    # ---------------------
    try:
        t = time.time()
        drawer_img = yolo_detect(image)
        print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
    except DrawerNotDetectedError as e:
        return None, None, None, None, f"Error: {str(e)}"
    # Ensure that shrunked_img is defined only after successful detection.
    t = time.time()
    shrunked_img = make_square(shrink_bbox(drawer_img, 0.90))
    del drawer_img
    gc.collect()
    print("Image shrinking completed in {:.2f} seconds".format(time.time() - t))

    # ---------------------
    # 2) Detect the reference box with YOLO
    # ---------------------
    try:
        t = time.time()
        reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img)
        print("Reference square detection completed in {:.2f} seconds".format(time.time() - t))
    except ReferenceBoxNotDetectedError as e:
        return None, None, None, None, f"Error: {str(e)}"

    # ---------------------
    # 3) Remove background of the reference box to compute scaling factor
    # ---------------------
    t = time.time()
    reference_obj_img = make_square(reference_obj_img)
    reference_square_mask = remove_bg_u2netp(reference_obj_img)
    print("Reference image processing completed in {:.2f} seconds".format(time.time() - t))

    t = time.time()
    try:
        cv2.imwrite("mask.jpg", cv2.cvtColor(reference_obj_img, cv2.COLOR_RGB2GRAY))
        scaling_factor = calculate_scaling_factor(
            reference_image_path="./Reference_ScalingBox.jpg",
            target_image=reference_square_mask,
            feature_detector="ORB",
        )
    except ZeroDivisionError:
        scaling_factor = None
        print("Error calculating scaling factor: Division by zero")
    except Exception as e:
        scaling_factor = None
        print(f"Error calculating scaling factor: {e}")

    if scaling_factor is None or scaling_factor == 0:
        scaling_factor = 1.0
        print("Using default scaling factor of 1.0 due to calculation error")
    gc.collect()
    print("Scaling factor determined: {}".format(scaling_factor))

    # ---------------------
    # 4) Optional boundary dimension checks
    # ---------------------
    if add_boundary.lower() == "yes":
        image_height_px, image_width_px = shrunked_img.shape[:2]
        image_height_in = image_height_px * scaling_factor
        image_width_in = image_width_px * scaling_factor
        if offset_unit.lower() == "mm":
            if boundary_length < 50:
                boundary_length = boundary_length * 25.4
            if boundary_width < 50:
                boundary_width = boundary_width * 25.4
            boundary_length_in = boundary_length / 25.4
            boundary_width_in = boundary_width / 25.4
        else:
            boundary_length_in = boundary_length
            boundary_width_in = boundary_width

        if boundary_length_in > (image_height_in - 1) or boundary_width_in > (image_width_in - 1):
            raise BoundaryExceedsError(
                "Error: The specified boundary dimensions exceed the allowed image dimensions. Please enter smaller values."
            )

    # ---------------------
    # 5) Remove background from the shrunked drawer image (main objects)
    # ---------------------
    if offset_unit.lower() == "mm":
        if offset_value < 1:
            offset_value = offset_value * 25.4
        offset_inches = offset_value / 25.4
    else:
        offset_inches = offset_value

    t = time.time()
    orig_size = shrunked_img.shape[:2]
    objects_mask = remove_bg(shrunked_img)
    processed_size = objects_mask.shape[:2]

    objects_mask = exclude_scaling_box(objects_mask, scaling_box_coords, orig_size, processed_size, expansion_factor=1.2)
    objects_mask = resize_img(objects_mask, (shrunked_img.shape[1], shrunked_img.shape[0]))
    del scaling_box_coords
    gc.collect()
    print("Object masking completed in {:.2f} seconds".format(time.time() - t))

    # Dilate mask by offset_pixels
    t = time.time()
    offset_pixels = (offset_inches / scaling_factor) * 2 + 1 if scaling_factor != 0 else 1
    dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
    del objects_mask
    gc.collect()
    print("Mask dilation completed in {:.2f} seconds".format(time.time() - t))

    Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")

    # ---------------------
    # 6) Extract outlines from the mask and convert them to DXF splines
    # ---------------------
    t = time.time()
    outlines, contours = extract_outlines(dilated_mask)
    print("Outline extraction completed in {:.2f} seconds".format(time.time() - t))

    output_img = shrunked_img.copy()
    del shrunked_img
    gc.collect()

    t = time.time()
    use_finger_clearance = True if finger_clearance.lower() == "yes" else False
    doc, final_polygons_inch = save_dxf_spline(
        contours, scaling_factor, processed_size[0], finger_clearance=use_finger_clearance
    )
    del contours
    gc.collect()
    print("DXF generation completed in {:.2f} seconds".format(time.time() - t))

    # ---------------------
    # Compute bounding box of inner tool contours BEFORE adding optional boundary
    # ---------------------
    inner_min_x = float("inf")
    inner_min_y = float("inf")
    inner_max_x = -float("inf")
    inner_max_y = -float("inf")
    for poly in final_polygons_inch:
        b = poly.bounds
        inner_min_x = min(inner_min_x, b[0])
        inner_min_y = min(inner_min_y, b[1])
        inner_max_x = max(inner_max_x, b[2])
        inner_max_y = max(inner_max_y, b[3])

    # ---------------------
    # 7) Add optional rectangular boundary
    # ---------------------
    boundary_polygon = None
    if add_boundary.lower() == "yes":
        boundary_polygon = add_rectangular_boundary(
            doc,
            final_polygons_inch,
            boundary_length,
            boundary_width,
            offset_unit,
            annotation_text,
            image_height_in=output_img.shape[0] * scaling_factor,
            image_width_in=output_img.shape[1] * scaling_factor
        )
        if boundary_polygon is not None:
            final_polygons_inch.append(boundary_polygon)

    # ---------------------
    # 8) Add annotation text (if provided) in the DXF
    # ---------------------
    msp = doc.modelspace()
    if annotation_text.strip():
        text_x = (inner_min_x + inner_max_x) / 2.0  
        text_height_dxf = 0.5  
        text_y_dxf = inner_min_y - 0.125 - text_height_dxf  
        text_entity = msp.add_text(
            annotation_text.strip(),
            dxfattribs={
                "height": text_height_dxf,
                "layer": "ANNOTATION",
                "style": "Bold"
            }
        )
        text_entity.dxf.insert = (text_x, text_y_dxf)

    # Save the DXF
    dxf_filepath = os.path.join("./outputs", "out.dxf")
    doc.saveas(dxf_filepath)

    # ---------------------
    # 9) For the preview images, draw the polygons and place text similarly
    # ---------------------
    draw_polygons_inch(final_polygons_inch, output_img, scaling_factor, processed_size[0], color=(0, 0, 255), thickness=2)
    new_outlines = np.ones_like(output_img) * 255
    draw_polygons_inch(final_polygons_inch, new_outlines, scaling_factor, processed_size[0], color=(0, 0, 255), thickness=2)

    if annotation_text.strip():
        text_height_cv = 0.5
        text_x_img = int(((inner_min_x + inner_max_x) / 2.0) / scaling_factor)
        text_y_in = inner_min_y - 0.125 - text_height_cv  
        text_y_img = int(processed_size[0] - (text_y_in / scaling_factor))
        org = (text_x_img - int(len(annotation_text.strip()) * 6), text_y_img)

        cv2.putText(
            output_img,
            annotation_text.strip(),
            org,
            cv2.FONT_HERSHEY_SIMPLEX,
            1.3,
            (0, 0, 255),
            3,
            cv2.LINE_AA
        )
        cv2.putText(
            new_outlines,
            annotation_text.strip(),
            org,
            cv2.FONT_HERSHEY_SIMPLEX,
            1.3,
            (0, 0, 255),
            3,
            cv2.LINE_AA
        )

    # Restore brightness for display purposes:
    # Since we reduced brightness by 0.5 during preprocessing,
    # we apply an enhancement factor of 2.0 here to bring it back.
    display_img = Image.fromarray(output_img)
    display_img = ImageEnhance.Brightness(display_img).enhance(2.0)
    output_img = np.array(display_img)

    outlines_color = cv2.cvtColor(new_outlines, cv2.COLOR_BGR2RGB)
    print("Total prediction time: {:.2f} seconds".format(time.time() - overall_start))

    return (
        cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB),
        outlines_color,
        dxf_filepath,
        dilated_mask,
        str(scaling_factor)
    )

# ---------------------
# Gradio Interface
# ---------------------
if __name__ == "__main__":
    os.makedirs("./outputs", exist_ok=True)
    def gradio_predict(img, offset, offset_unit, finger_clearance, add_boundary, boundary_length, boundary_width, annotation_text):
        try:
            return predict(img, offset, offset_unit, finger_clearance, add_boundary, boundary_length, boundary_width, annotation_text)
        except Exception as e:
            return None, None, None, None, f"Error: {str(e)}"
    iface = gr.Interface(
        fn=gradio_predict,
        inputs=[
            gr.Image(label="Input Image"),
            gr.Number(label="Offset value for Mask", value=0.075),
            gr.Dropdown(label="Offset Unit", choices=["mm", "inches"], value="inches"),
            gr.Dropdown(label="Add Finger Clearance?", choices=["Yes", "No"], value="No"),
            gr.Dropdown(label="Add Rectangular Boundary?", choices=["Yes", "No"], value="No"),
            gr.Number(label="Boundary Length", value=300.0, precision=2),
            gr.Number(label="Boundary Width", value=200.0, precision=2),
            gr.Textbox(label="Annotation (max 20 chars)", max_length=20, placeholder="Type up to 20 characters")
        ],
        outputs=[
            gr.Image(label="Output Image"),
            gr.Image(label="Outlines of Objects"),
            gr.File(label="DXF file"),
            gr.Image(label="Mask"),
            gr.Textbox(label="Scaling Factor (inches/pixel)")
        ],
        examples=[
            ["./Test20.jpg", 0.075, "inches", "No", "No", 300.0, 200.0, "MyTool"],
            ["./Test21.jpg", 0.075, "inches", "Yes", "Yes", 300.0, 200.0, "Tool2"]
        ]
    )
    iface.launch(share=True)