DXF_Generation / app.py
Nighty3912's picture
Update app.py
dca9b7a verified
raw
history blame
31.6 kB
from __future__ import annotations
import os
import gc
import base64
import io
import time
import shutil
import numpy as np
import torch
import cv2
import ezdxf
from ezdxf.addons.text2path import make_paths_from_str
from ezdxf import path
from ezdxf.addons import text2path
from ezdxf.enums import TextEntityAlignment
from ezdxf.fonts.fonts import FontFace, get_font_face
import gradio as gr
from PIL import Image, ImageEnhance
from pathlib import Path
from typing import List, Union
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from scalingtestupdated import calculate_scaling_factor
from shapely.geometry import Polygon, Point, MultiPolygon
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
from u2net import U2NETP
# ---------------------
# Create a cache folder for models
# ---------------------
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
os.makedirs(CACHE_DIR, exist_ok=True)
# ---------------------
# Custom Exceptions
# ---------------------
class DrawerNotDetectedError(Exception):
"""Raised when the drawer cannot be detected in the image"""
pass
class ReferenceBoxNotDetectedError(Exception):
"""Raised when the reference box cannot be detected in the image"""
pass
class BoundaryOverlapError(Exception):
"""Raised when the optional boundary dimensions are too small and overlap with the inner contours."""
pass
class TextOverlapError(Exception):
"""Raised when the text overlaps with the inner contours (with a margin of 0.75)."""
pass
# ---------------------
# Global Model Initialization with caching and print statements
# ---------------------
print("Loading YOLOWorld model...")
start_time = time.time()
yolo_model_path = os.path.join(CACHE_DIR, "yolov8x-worldv2.pt")
if not os.path.exists(yolo_model_path):
print("Caching YOLOWorld model to", yolo_model_path)
shutil.copy("yolov8x-worldv2.pt", yolo_model_path)
drawer_detector_global = YOLOWorld(yolo_model_path)
drawer_detector_global.set_classes(["box"])
print("YOLOWorld model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading YOLO reference model...")
start_time = time.time()
reference_model_path = os.path.join(CACHE_DIR, "best.pt")
if not os.path.exists(reference_model_path):
print("Caching YOLO reference model to", reference_model_path)
shutil.copy("best.pt", reference_model_path)
reference_detector_global = YOLO(reference_model_path)
print("YOLO reference model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading U²-Net model for reference background removal (U2NETP)...")
start_time = time.time()
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
if not os.path.exists(u2net_model_path):
print("Caching U²-Net model to", u2net_model_path)
shutil.copy("u2netp.pth", u2net_model_path)
u2net_global = U2NETP(3, 1)
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
device = "cpu"
u2net_global.to(device)
u2net_global.eval()
print("U²-Net model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading BiRefNet model...")
start_time = time.time()
birefnet_global = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)
torch.set_float32_matmul_precision("high")
birefnet_global.to(device)
birefnet_global.eval()
print("BiRefNet model loaded in {:.2f} seconds".format(time.time() - start_time))
# Define transform for BiRefNet
transform_image_global = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# ---------------------
# Model Reload Function (if needed)
# ---------------------
def unload_and_reload_models():
global drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
print("Reloading models...")
start_time = time.time()
del drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
new_drawer_detector = YOLOWorld(os.path.join(CACHE_DIR, "yolov8x-worldv2.pt"))
new_drawer_detector.set_classes(["box"])
new_reference_detector = YOLO(os.path.join(CACHE_DIR, "best.pt"))
new_birefnet = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)
new_birefnet.to(device)
new_birefnet.eval()
new_u2net = U2NETP(3, 1)
new_u2net.load_state_dict(torch.load(os.path.join(CACHE_DIR, "u2netp.pth"), map_location="cpu"))
new_u2net.to(device)
new_u2net.eval()
drawer_detector_global = new_drawer_detector
reference_detector_global = new_reference_detector
birefnet_global = new_birefnet
u2net_global = new_u2net
print("Models reloaded in {:.2f} seconds".format(time.time() - start_time))
# ---------------------
# Helper Function: resize_img (defined once)
# ---------------------
def resize_img(img: np.ndarray, resize_dim):
return np.array(Image.fromarray(img).resize(resize_dim))
# ---------------------
# Other Helper Functions for Detection & Processing
# ---------------------
def yolo_detect(image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor]) -> np.ndarray:
t = time.time()
results: List[Results] = drawer_detector_global.predict(image)
if not results or len(results) == 0 or len(results[0].boxes) == 0:
raise DrawerNotDetectedError("Drawer not detected in the image.")
print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
return save_one_box(results[0].cpu().boxes.xyxy, im=results[0].orig_img, save=False)
def detect_reference_square(img: np.ndarray):
t = time.time()
res = reference_detector_global.predict(img, conf=0.15)
if not res or len(res) == 0 or len(res[0].boxes) == 0:
raise ReferenceBoxNotDetectedError("Reference box not detected in the image.")
print("Reference detection completed in {:.2f} seconds".format(time.time() - t))
return (
save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False),
res[0].cpu().boxes.xyxy[0]
)
# Use U2NETP for reference background removal.
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
t = time.time()
image_pil = Image.fromarray(image)
transform_u2netp = transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to("cpu")
with torch.no_grad():
outputs = u2net_global(input_tensor)
pred = outputs[0]
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
pred_np = pred.squeeze().cpu().numpy()
pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
pred_np = (pred_np * 255).astype(np.uint8)
print("U2NETP background removal completed in {:.2f} seconds".format(time.time() - t))
return pred_np
# Use BiRefNet for main object background removal.
def remove_bg(image: np.ndarray) -> np.ndarray:
t = time.time()
image_pil = Image.fromarray(image)
input_images = transform_image_global(image_pil).unsqueeze(0).to("cpu")
with torch.no_grad():
preds = birefnet_global(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
scale_ratio = 1024 / max(image_pil.size)
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
result = np.array(pred_pil.resize(scaled_size))
print("BiRefNet background removal completed in {:.2f} seconds".format(time.time() - t))
return result
def make_square(img: np.ndarray):
height, width = img.shape[:2]
max_dim = max(height, width)
pad_height = (max_dim - height) // 2
pad_width = (max_dim - width) // 2
pad_height_extra = max_dim - height - 2 * pad_height
pad_width_extra = max_dim - width - 2 * pad_width
if len(img.shape) == 3:
padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
(0, 0)), mode="edge")
else:
padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra)), mode="edge")
return padded
def shrink_bbox(image: np.ndarray, shrink_factor: float):
height, width = image.shape[:2]
center_x, center_y = width // 2, height // 2
new_width = int(width * shrink_factor)
new_height = int(height * shrink_factor)
x1 = max(center_x - new_width // 2, 0)
y1 = max(center_y - new_height // 2, 0)
x2 = min(center_x + new_width // 2, width)
y2 = min(center_y + new_height // 2, height)
return image[y1:y2, x1:x2]
def exclude_scaling_box(image: np.ndarray, bbox: np.ndarray, orig_size: tuple, processed_size: tuple, expansion_factor: float = 1.2) -> np.ndarray:
x_min, y_min, x_max, y_max = map(int, bbox)
scale_x = processed_size[1] / orig_size[1]
scale_y = processed_size[0] / orig_size[0]
x_min = int(x_min * scale_x)
x_max = int(x_max * scale_x)
y_min = int(y_min * scale_y)
y_max = int(y_max * scale_y)
box_width = x_max - x_min
box_height = y_max - y_min
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
expanded_x_max = min(image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2))
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
expanded_y_max = min(image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2))
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
return image
def resample_contour(contour):
num_points = 1000
smoothing_factor = 5
spline_degree = 3
if len(contour) < spline_degree + 1:
raise ValueError(f"Contour must have at least {spline_degree + 1} points, but has {len(contour)} points.")
contour = contour[:, 0, :]
tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
u = np.linspace(0, 1, num_points)
resampled_points = splev(u, tck)
smoothed_x = gaussian_filter1d(resampled_points[0], sigma=1)
smoothed_y = gaussian_filter1d(resampled_points[1], sigma=1)
return np.array([smoothed_x, smoothed_y]).T
# ---------------------
# Add the missing extract_outlines function
# ---------------------
def extract_outlines(binary_image: np.ndarray) -> (np.ndarray, list):
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
outline_image = np.zeros_like(binary_image)
cv2.drawContours(outline_image, contours, -1, (255), thickness=2)
return cv2.bitwise_not(outline_image), contours
# ---------------------
# Functions for Finger Cut Clearance
# ---------------------
def union_tool_and_circle(tool_polygon: Polygon, center_inch, circle_diameter=1.0):
radius = circle_diameter / 2.0
circle_poly = Point(center_inch).buffer(radius, resolution=64)
union_poly = tool_polygon.union(circle_poly)
return union_poly
def build_tool_polygon(points_inch):
return Polygon(points_inch)
def polygon_to_exterior_coords(poly: Polygon):
if poly.geom_type == "MultiPolygon":
biggest = max(poly.geoms, key=lambda g: g.area)
poly = biggest
if not poly.exterior:
return []
return list(poly.exterior.coords)
def place_finger_cut_adjusted(tool_polygon, points_inch, existing_centers, all_polygons, circle_diameter=1.0, min_gap=0.25, max_attempts=30):
import random
needed_center_distance = circle_diameter + min_gap
radius = circle_diameter / 2.0
attempts = 0
indices = list(range(len(points_inch)))
random.shuffle(indices) # Shuffle indices for randomness
for i in indices:
if attempts >= max_attempts:
break
cx, cy = points_inch[i]
# Try small adjustments around the chosen candidate
for dx in np.linspace(-0.1, 0.1, 5):
for dy in np.linspace(-0.1, 0.1, 5):
candidate_center = (cx + dx, cy + dy)
# Check distance from already placed centers
if any(np.hypot(candidate_center[0] - ex, candidate_center[1] - ey) < needed_center_distance for ex, ey in existing_centers):
continue
circle_poly = Point(candidate_center).buffer(radius, resolution=64)
union_poly = tool_polygon.union(circle_poly)
overlap = False
# Check against other tool polygons for overlap or proximity issues
for poly in all_polygons:
if union_poly.intersects(poly) or circle_poly.buffer(min_gap).intersects(poly):
overlap = True
break
if overlap:
continue
# If candidate passes, accept it
existing_centers.append(candidate_center)
return union_poly, candidate_center
attempts += 1
print("Warning: Could not place a finger cut circle meeting all spacing requirements.")
return None, None
# ---------------------
# DXF Spline and Boundary Functions
# ---------------------
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
degree = 3
closed = True
doc = ezdxf.new(units=0)
doc.units = ezdxf.units.IN
doc.header["$INSUNITS"] = ezdxf.units.IN
msp = doc.modelspace()
finger_cut_centers = []
final_polygons_inch = []
for contour in inflated_contours:
try:
resampled_contour = resample_contour(contour)
points_inch = [(x * scaling_factor, (height - y) * scaling_factor) for x, y in resampled_contour]
if len(points_inch) < 3:
continue
if np.linalg.norm(np.array(points_inch[0]) - np.array(points_inch[-1])) > 1e-2:
points_inch.append(points_inch[0])
tool_polygon = build_tool_polygon(points_inch)
if finger_clearance:
union_poly, center = place_finger_cut_adjusted(tool_polygon, points_inch, finger_cut_centers, final_polygons_inch, circle_diameter=1.0, min_gap=0.25, max_attempts=30)
if union_poly is not None:
tool_polygon = union_poly
exterior_coords = polygon_to_exterior_coords(tool_polygon)
if len(exterior_coords) < 3:
continue
msp.add_spline(exterior_coords, degree=degree, dxfattribs={"layer": "TOOLS"})
final_polygons_inch.append(tool_polygon)
except ValueError as e:
print(f"Skipping contour: {e}")
return doc, final_polygons_inch
def add_rectangular_boundary(doc, polygons_inch, boundary_length, boundary_width, offset_unit, annotation_text="", image_height_in=None, image_width_in=None):
msp = doc.modelspace()
# Convert from mm if necessary
if offset_unit.lower() == "mm":
if boundary_length < 50:
boundary_length = boundary_length * 25.4
if boundary_width < 50:
boundary_width = boundary_width * 25.4
boundary_length_in = boundary_length / 25.4
boundary_width_in = boundary_width / 25.4
else:
boundary_length_in = boundary_length
boundary_width_in = boundary_width
# Compute bounding box of inner contours
min_x = float("inf")
min_y = float("inf")
max_x = -float("inf")
max_y = -float("inf")
for poly in polygons_inch:
b = poly.bounds
min_x = min(min_x, b[0])
min_y = min(min_y, b[1])
max_x = max(max_x, b[2])
max_y = max(max_y, b[3])
if min_x == float("inf"):
print("No tool polygons found, skipping boundary.")
return None
# Compute inner bounding box dimensions
inner_width = max_x - min_x
inner_length = max_y - min_y
# Set clearance margins
clearance_side = 0.25 # left/right clearance
clearance_tb = 0.25 # top/bottom clearance
if annotation_text.strip():
clearance_tb = 0.75
# Calculate center of inner contours
center_x = (min_x + max_x) / 2
center_y = (min_y + max_y) / 2
# Draw rectangle centered at (center_x, center_y)
left = center_x - boundary_width_in / 2
right = center_x + boundary_width_in / 2
bottom = center_y - boundary_length_in / 2
top = center_y + boundary_length_in / 2
rect_coords = [(left, bottom), (right, bottom), (right, top), (left, top), (left, bottom)]
from shapely.geometry import Polygon as ShapelyPolygon
boundary_polygon = ShapelyPolygon(rect_coords)
msp.add_lwpolyline(rect_coords, close=True, dxfattribs={"layer": "BOUNDARY"})
text_top = boundary_polygon.bounds[1] + 1
if (annotation_text.strip()==0):
if boundary_width_in <= inner_width + 2 * clearance_side or boundary_length_in <= inner_length + 2 * clearance_tb:
raise BoundaryOverlapError("Error: The specified boundary dimensions are too small and overlap with the inner contours. Please provide larger values.")
else:
if text_top > (min_y - 0.75):
raise TextOverlapError("Error: The Text is overlapping the inner contours of the object.")
return boundary_polygon
def draw_polygons_inch(polygons_inch, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
for poly in polygons_inch:
if poly.geom_type == "MultiPolygon":
for subpoly in poly.geoms:
draw_single_polygon(subpoly, image_rgb, scaling_factor, image_height, color, thickness)
else:
draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color, thickness)
def draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
ext = list(poly.exterior.coords)
if len(ext) < 3:
return
pts_px = []
for (x_in, y_in) in ext:
px = int(x_in / scaling_factor)
py = int(image_height - (y_in / scaling_factor))
pts_px.append([px, py])
pts_px = np.array(pts_px, dtype=np.int32)
cv2.polylines(image_rgb, [pts_px], isClosed=True, color=color, thickness=thickness, lineType=cv2.LINE_AA)
# ---------------------
# Main Predict Function with Finger Cut Clearance, Boundary Box, Annotation and Sharpness Enhancement
# ---------------------
def predict(
image: Union[str, bytes, np.ndarray],
offset_value: float,
offset_unit: str, # "mm" or "inches"
finger_clearance: str, # "Yes" or "No"
add_boundary: str, # "Yes" or "No"
boundary_length: float,
boundary_width: float,
annotation_text: str
):
overall_start = time.time()
# Convert image to NumPy array if needed
if isinstance(image, str):
if os.path.exists(image):
image = np.array(Image.open(image).convert("RGB"))
else:
try:
image = np.array(Image.open(io.BytesIO(base64.b64decode(image))).convert("RGB"))
except Exception:
raise ValueError("Invalid base64 image data")
# Apply brightness and sharpness enhancement
if isinstance(image, np.ndarray):
pil_image = Image.fromarray(image)
enhanced_image = ImageEnhance.Sharpness(pil_image).enhance(1.5)
image = np.array(enhanced_image)
# ---------------------
# 1) Detect the drawer with YOLOWorld (or use original image if not detected)
# ---------------------
drawer_detected = True
try:
t = time.time()
drawer_img = yolo_detect(image)
print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
except DrawerNotDetectedError as e:
print(f"Drawer not detected: {e}, using original image.")
drawer_detected = False
drawer_img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Process the image (either cropped drawer or original)
t = time.time()
if drawer_detected:
# For detected drawers: shrink and square
shrunked_img = make_square(shrink_bbox(drawer_img, 0.90))
else:
# For non-drawer images: keep original dimensions
shrunked_img = drawer_img # Already in BGR format from above
del drawer_img
gc.collect()
print("Image processing completed in {:.2f} seconds".format(time.time() - t))
# ---------------------
# 2) Detect the reference box with YOLO (now works on either cropped or original image)
# ---------------------
try:
t = time.time()
reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img)
print("Reference square detection completed in {:.2f} seconds".format(time.time() - t))
except ReferenceBoxNotDetectedError as e:
return None, None, None, None, f"Error: {str(e)}"
# ---------------------
# 3) Remove background of the reference box to compute scaling factor
# ---------------------
t = time.time()
reference_obj_img = make_square(reference_obj_img)
reference_square_mask = remove_bg_u2netp(reference_obj_img)
print("Reference image processing completed in {:.2f} seconds".format(time.time() - t))
t = time.time()
try:
cv2.imwrite("mask.jpg", cv2.cvtColor(reference_obj_img, cv2.COLOR_RGB2GRAY))
scaling_factor = calculate_scaling_factor(
reference_image_path="./Reference_ScalingBox.jpg",
target_image=reference_square_mask,
feature_detector="ORB",
)
except ZeroDivisionError:
scaling_factor = None
print("Error calculating scaling factor: Division by zero")
except Exception as e:
scaling_factor = None
print(f"Error calculating scaling factor: {e}")
if scaling_factor is None or scaling_factor == 0:
scaling_factor = 1.0
print("Using default scaling factor of 1.0 due to calculation error")
gc.collect()
print("Scaling factor determined: {}".format(scaling_factor))
# ---------------------
# 4) Optional boundary dimension checks (now without size limits)
# ---------------------
if add_boundary.lower() == "yes":
if offset_unit.lower() == "mm":
if boundary_length < 50:
boundary_length = boundary_length * 25.4
if boundary_width < 50:
boundary_width = boundary_width * 25.4
boundary_length_in = boundary_length / 25.4
boundary_width_in = boundary_width / 25.4
else:
boundary_length_in = boundary_length
boundary_width_in = boundary_width
# ---------------------
# 5) Remove background from the shrunked drawer image (main objects)
# ---------------------
if offset_unit.lower() == "mm":
if offset_value < 1:
offset_value = offset_value * 25.4
offset_inches = offset_value / 25.4
else:
offset_inches = offset_value
t = time.time()
orig_size = shrunked_img.shape[:2]
objects_mask = remove_bg(shrunked_img)
processed_size = objects_mask.shape[:2]
objects_mask = exclude_scaling_box(objects_mask, scaling_box_coords, orig_size, processed_size, expansion_factor=2)
objects_mask = resize_img(objects_mask, (shrunked_img.shape[1], shrunked_img.shape[0]))
del scaling_box_coords
gc.collect()
print("Object masking completed in {:.2f} seconds".format(time.time() - t))
# Dilate mask by offset_pixels
t = time.time()
offset_pixels = (offset_inches / scaling_factor) * 2 + 1 if scaling_factor != 0 else 1
dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
del objects_mask
gc.collect()
print("Mask dilation completed in {:.2f} seconds".format(time.time() - t))
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
# ---------------------
# 6) Extract outlines from the mask and convert them to DXF splines
# ---------------------
t = time.time()
outlines, contours = extract_outlines(dilated_mask)
print("Outline extraction completed in {:.2f} seconds".format(time.time() - t))
output_img = shrunked_img.copy()
del shrunked_img
gc.collect()
t = time.time()
use_finger_clearance = True if finger_clearance.lower() == "yes" else False
doc, final_polygons_inch = save_dxf_spline(
contours, scaling_factor, processed_size[0], finger_clearance=use_finger_clearance
)
del contours
gc.collect()
print("DXF generation completed in {:.2f} seconds".format(time.time() - t))
# ---------------------
# Compute bounding box of inner tool contours BEFORE adding optional boundary
# ---------------------
inner_min_x = float("inf")
inner_min_y = float("inf")
inner_max_x = -float("inf")
inner_max_y = -float("inf")
for poly in final_polygons_inch:
b = poly.bounds
inner_min_x = min(inner_min_x, b[0])
inner_min_y = min(inner_min_y, b[1])
inner_max_x = max(inner_max_x, b[2])
inner_max_y = max(inner_max_y, b[3])
# ---------------------
# 7) Add optional rectangular boundary
# ---------------------
boundary_polygon = None
if add_boundary.lower() == "yes":
boundary_polygon = add_rectangular_boundary(
doc,
final_polygons_inch,
boundary_length,
boundary_width,
offset_unit,
annotation_text,
image_height_in=output_img.shape[0] * scaling_factor,
image_width_in=output_img.shape[1] * scaling_factor
)
if boundary_polygon is not None:
final_polygons_inch.append(boundary_polygon)
# ---------------------
# 8) Add annotation text (if provided) in the DXF
# ---------------------
msp = doc.modelspace()
if annotation_text.strip():
text_x = ((inner_min_x + inner_max_x) / 2.0) - (int(len(annotation_text.strip()) / 2.0))
text_height_dxf = 0.75
text_y_dxf = boundary_polygon.bounds[1] + 0.25
font = get_font_face("Arial")
paths = text2path.make_paths_from_str(
annotation_text.strip().upper(),
font=font, # Use default font
size=text_height_dxf,
align=TextEntityAlignment.LEFT
)
# Create a translation matrix
translation = ezdxf.math.Matrix44.translate(text_x, text_y_dxf, 0)
# Apply the translation to each path
translated_paths = [p.transform(translation) for p in paths]
# Render the paths as splines and polylines
path.render_splines_and_polylines(
msp,
translated_paths,
dxfattribs={"layer": "ANNOTATION", "color": 7}
)
# Save the DXF
dxf_filepath = os.path.join("./outputs", "out.dxf")
doc.saveas(dxf_filepath)
# ---------------------
# 9) For the preview images, draw the polygons and place text similarly
# ---------------------
draw_polygons_inch(final_polygons_inch, output_img, scaling_factor, processed_size[0], color=(0, 0, 255), thickness=2)
new_outlines = np.ones_like(output_img) * 255
draw_polygons_inch(final_polygons_inch, new_outlines, scaling_factor, processed_size[0], color=(0, 0, 255), thickness=2)
if annotation_text.strip():
text_height_cv = 0.75
text_x_img = int(((inner_min_x + inner_max_x) / 2.0) / scaling_factor)
text_y_in = boundary_polygon.bounds[1] + 0.25
text_y_img = int(processed_size[0] - (text_y_in / scaling_factor))
org = (text_x_img - int(len(annotation_text.strip()) * 6), text_y_img)
# Method 2: Use two different thicknesses
# Draw thicker outline
temp_img = np.zeros_like(output_img)
cv2.putText(
temp_img,
annotation_text.strip().upper(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
2,
(0, 0, 255), # Red color
4, # Thicker outline
cv2.LINE_AA
)
cv2.putText(
temp_img,
annotation_text.strip().upper(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
2,
(0, 0, 0), # Black to create hole
2, # Thinner inner part
cv2.LINE_AA
)
outline_mask = cv2.cvtColor(temp_img, cv2.COLOR_BGR2GRAY)
_, outline_mask = cv2.threshold(outline_mask, 1, 255, cv2.THRESH_BINARY)
output_img[outline_mask > 0] = temp_img[outline_mask > 0]
cv2.putText(
new_outlines,
annotation_text.strip().upper(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
2,
(0, 0, 255), # Red color
4, # Thicker outline
cv2.LINE_AA
)
cv2.putText(
new_outlines,
annotation_text.strip().upper(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
2,
(255, 255, 255), # Inner text in white
2, # Thinner inner part
cv2.LINE_AA
)
outlines_color = cv2.cvtColor(new_outlines, cv2.COLOR_BGR2RGB)
print("Total prediction time: {:.2f} seconds".format(time.time() - overall_start))
return (
cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB),
outlines_color,
dxf_filepath,
dilated_mask,
str(scaling_factor)
)
# ---------------------
# Gradio Interface
# ---------------------
if __name__ == "__main__":
os.makedirs("./outputs", exist_ok=True)
def gradio_predict(img, offset, offset_unit, finger_clearance, add_boundary, boundary_length, boundary_width, annotation_text):
try:
return predict(img, offset, offset_unit, finger_clearance, add_boundary, boundary_length, boundary_width, annotation_text)
except Exception as e:
return None, None, None, None, f"Error: {str(e)}"
iface = gr.Interface(
fn=gradio_predict,
inputs=[
gr.Image(label="Input Image"),
gr.Number(label="Offset value for Mask", value=0.075),
gr.Dropdown(label="Offset Unit", choices=["mm", "inches"], value="inches"),
gr.Dropdown(label="Add Finger Clearance?", choices=["Yes", "No"], value="No"),
gr.Dropdown(label="Add Rectangular Boundary?", choices=["Yes", "No"], value="No"),
gr.Number(label="Boundary Length", value=300.0, precision=2),
gr.Number(label="Boundary Width", value=200.0, precision=2),
gr.Textbox(label="Annotation (max 20 chars)", max_length=20, placeholder="Type up to 20 characters")
],
outputs=[
gr.Image(label="Output Image"),
gr.Image(label="Outlines of Objects"),
gr.File(label="DXF file"),
gr.Image(label="Mask"),
gr.Textbox(label="Scaling Factor (inches/pixel)")
],
examples=[
["./Test20.jpg", 0.075, "inches", "No", "No", 300.0, 200.0, "MyTool"],
["./Test21.jpg", 0.075, "inches", "Yes", "Yes", 300.0, 200.0, "Tool2"]
]
)
iface.launch(share=True)