DXF_Generation / app.py
Nighty3912's picture
Update app.py
b932751 verified
from __future__ import annotations
import os
import gc
import base64
import io
import time
import shutil
import numpy as np
import torch
import cv2
import ezdxf
from ezdxf.addons.text2path import make_paths_from_str
from ezdxf import path
from ezdxf.addons import text2path
from ezdxf.enums import TextEntityAlignment
from ezdxf.fonts.fonts import FontFace, get_font_face
import gradio as gr
from PIL import Image, ImageEnhance
from pathlib import Path
from typing import List, Union
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from scalingtestupdated import calculate_scaling_factor
from shapely.geometry import Polygon, Point, MultiPolygon
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
from u2net import U2NETP
# ---------------------
# Create a cache folder for models
# ---------------------
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
os.makedirs(CACHE_DIR, exist_ok=True)
# ---------------------
# Custom Exceptions
# ---------------------
class DrawerNotDetectedError(Exception):
"""Raised when the drawer cannot be detected in the image"""
pass
class ReferenceBoxNotDetectedError(Exception):
"""Raised when the Reference coin cannot be detected in the image"""
pass
class BoundaryOverlapError(Exception):
"""The specified boundary dimensions are too small and overlap with the inner contours.Please provide larger value for boundary length and width."""
pass
class TextOverlapError(Exception):
"""Raised when the text overlaps with the inner contours (with a margin of 0.75).Please provide larger value for boundary length and width."""
pass
class FingerCutOverlapError(Exception):
"""There was an overlap with fingercuts... Please try again to generate dxf."""
pass
# ---------------------
# Global Model Initialization with caching and print statements
# ---------------------
print("Loading YOLOWorld model...")
start_time = time.time()
yolo_model_path = os.path.join(CACHE_DIR, "yolov8x-worldv2.pt")
if not os.path.exists(yolo_model_path):
print("Caching YOLOWorld model to", yolo_model_path)
shutil.copy("yolov8x-worldv2.pt", yolo_model_path)
drawer_detector_global = YOLOWorld(yolo_model_path)
drawer_detector_global.set_classes(["box"])
print("YOLOWorld model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading YOLO reference model...")
start_time = time.time()
reference_model_path = os.path.join(CACHE_DIR, "coin_det.pt")
if not os.path.exists(reference_model_path):
print("Caching YOLO reference model to", reference_model_path)
shutil.copy("coin_det.pt", reference_model_path)
reference_detector_global = YOLO(reference_model_path)
print("YOLO reference model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading U²-Net model for reference background removal (U2NETP)...")
start_time = time.time()
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
if not os.path.exists(u2net_model_path):
print("Caching U²-Net model to", u2net_model_path)
shutil.copy("u2netp.pth", u2net_model_path)
u2net_global = U2NETP(3, 1)
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
device = "cpu"
u2net_global.to(device)
u2net_global.eval()
print("U²-Net model loaded in {:.2f} seconds".format(time.time() - start_time))
print("Loading BiRefNet model...")
start_time = time.time()
birefnet_global = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)
torch.set_float32_matmul_precision("high")
birefnet_global.to(device)
birefnet_global.eval()
print("BiRefNet model loaded in {:.2f} seconds".format(time.time() - start_time))
# Define transform for BiRefNet
transform_image_global = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# ---------------------
# Model Reload Function (if needed)
# ---------------------
def unload_and_reload_models():
global drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
print("Reloading models...")
start_time = time.time()
del drawer_detector_global, reference_detector_global, birefnet_global, u2net_global
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
new_drawer_detector = YOLOWorld(os.path.join(CACHE_DIR, "yolov8x-worldv2.pt"))
new_drawer_detector.set_classes(["box"])
new_reference_detector = YOLO(os.path.join(CACHE_DIR, "coin_det.pt"))
new_birefnet = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)
new_birefnet.to(device)
new_birefnet.eval()
new_u2net = U2NETP(3, 1)
new_u2net.load_state_dict(torch.load(os.path.join(CACHE_DIR, "u2netp.pth"), map_location="cpu"))
new_u2net.to(device)
new_u2net.eval()
drawer_detector_global = new_drawer_detector
reference_detector_global = new_reference_detector
birefnet_global = new_birefnet
u2net_global = new_u2net
print("Models reloaded in {:.2f} seconds".format(time.time() - start_time))
# ---------------------
# Helper Function: resize_img (defined once)
# ---------------------
def resize_img(img: np.ndarray, resize_dim):
return np.array(Image.fromarray(img).resize(resize_dim))
# ---------------------
# Other Helper Functions for Detection & Processing
# ---------------------
def yolo_detect(image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor]) -> np.ndarray:
t = time.time()
results: List[Results] = drawer_detector_global.predict(image)
if not results or len(results) == 0 or len(results[0].boxes) == 0:
raise DrawerNotDetectedError("Drawer not detected in the image.")
print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
return save_one_box(results[0].cpu().boxes.xyxy, im=results[0].orig_img, save=False)
def detect_reference_square(img: np.ndarray):
t = time.time()
res = reference_detector_global.predict(img, conf=0.15)
if not res or len(res) == 0 or len(res[0].boxes) == 0:
raise ReferenceBoxNotDetectedError("Reference Coin not detected in the image.")
print("Reference coin detection completed in {:.2f} seconds".format(time.time() - t))
return (
save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False),
res[0].cpu().boxes.xyxy[0]
)
# Use U2NETP for reference background removal.
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
t = time.time()
image_pil = Image.fromarray(image)
transform_u2netp = transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to("cpu")
with torch.no_grad():
outputs = u2net_global(input_tensor)
pred = outputs[0]
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
pred_np = pred.squeeze().cpu().numpy()
pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
pred_np = (pred_np * 255).astype(np.uint8)
print("U2NETP background removal completed in {:.2f} seconds".format(time.time() - t))
return pred_np
# Use BiRefNet for main object background removal.
def remove_bg(image: np.ndarray) -> np.ndarray:
t = time.time()
image_pil = Image.fromarray(image)
input_images = transform_image_global(image_pil).unsqueeze(0).to("cpu")
with torch.no_grad():
preds = birefnet_global(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
scale_ratio = 1024 / max(image_pil.size)
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
result = np.array(pred_pil.resize(scaled_size))
print("BiRefNet background removal completed in {:.2f} seconds".format(time.time() - t))
return result
def make_square(img: np.ndarray):
height, width = img.shape[:2]
max_dim = max(height, width)
pad_height = (max_dim - height) // 2
pad_width = (max_dim - width) // 2
pad_height_extra = max_dim - height - 2 * pad_height
pad_width_extra = max_dim - width - 2 * pad_width
if len(img.shape) == 3:
padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
(0, 0)), mode="edge")
else:
padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra)), mode="edge")
return padded
def shrink_bbox(image: np.ndarray, shrink_factor: float):
height, width = image.shape[:2]
center_x, center_y = width // 2, height // 2
new_width = int(width * shrink_factor)
new_height = int(height * shrink_factor)
x1 = max(center_x - new_width // 2, 0)
y1 = max(center_y - new_height // 2, 0)
x2 = min(center_x + new_width // 2, width)
y2 = min(center_y + new_height // 2, height)
return image[y1:y2, x1:x2]
def exclude_scaling_box(image: np.ndarray, bbox: np.ndarray, orig_size: tuple, processed_size: tuple, expansion_factor: float = 1.2) -> np.ndarray:
x_min, y_min, x_max, y_max = map(int, bbox)
scale_x = processed_size[1] / orig_size[1]
scale_y = processed_size[0] / orig_size[0]
x_min = int(x_min * scale_x)
x_max = int(x_max * scale_x)
y_min = int(y_min * scale_y)
y_max = int(y_max * scale_y)
box_width = x_max - x_min
box_height = y_max - y_min
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
expanded_x_max = min(image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2))
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
expanded_y_max = min(image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2))
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
return image
import logging
import time
import signal
import numpy as np
import cv2
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
from shapely.geometry import Point, Polygon
import random
import ezdxf
import functools
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Custom TimeoutError class
class TimeoutReachedError(Exception):
pass
# Timeout context manager
class TimeoutContext:
def __init__(self, seconds):
self.seconds = seconds
self.original_handler = None
def timeout_handler(self, signum, frame):
raise TimeoutReachedError(f"Function timed out after {self.seconds} seconds")
def __enter__(self):
if hasattr(signal, 'SIGALRM'): # Unix-like systems
self.original_handler = signal.getsignal(signal.SIGALRM)
signal.signal(signal.SIGALRM, self.timeout_handler)
signal.alarm(self.seconds)
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if hasattr(signal, 'SIGALRM'): # Unix-like systems
signal.alarm(0)
signal.signal(signal.SIGALRM, self.original_handler)
if exc_type is TimeoutReachedError:
logger.warning(f"Timeout reached: {exc_val}")
return True # Suppress the exception
return False
def resample_contour(contour):
logger.info(f"Starting resample_contour with contour of shape {contour.shape}")
num_points = 1000
smoothing_factor = 5
spline_degree = 3
if len(contour) < spline_degree + 1:
error_msg = f"Contour must have at least {spline_degree + 1} points, but has {len(contour)} points."
logger.error(error_msg)
raise ValueError(error_msg)
try:
contour = contour[:, 0, :]
logger.debug(f"Reshaped contour to shape {contour.shape}")
tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
logger.debug("Generated spline parameters")
u = np.linspace(0, 1, num_points)
resampled_points = splev(u, tck)
logger.debug(f"Resampled to {num_points} points")
smoothed_x = gaussian_filter1d(resampled_points[0], sigma=1)
smoothed_y = gaussian_filter1d(resampled_points[1], sigma=1)
result = np.array([smoothed_x, smoothed_y]).T
logger.info(f"Completed resample_contour with result shape {result.shape}")
return result
except Exception as e:
logger.error(f"Error in resample_contour: {e}")
raise
def extract_outlines(binary_image: np.ndarray) -> (np.ndarray, list):
logger.info(f"Starting extract_outlines with image shape {binary_image.shape}")
try:
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
logger.debug(f"Found {len(contours)} contours")
outline_image = np.zeros_like(binary_image)
cv2.drawContours(outline_image, contours, -1, (255), thickness=2)
result_image = cv2.bitwise_not(outline_image)
logger.info(f"Completed extract_outlines with {len(contours)} contours")
return result_image, contours
except Exception as e:
logger.error(f"Error in extract_outlines: {e}")
raise
def union_tool_and_circle(tool_polygon: Polygon, center_inch, circle_diameter=1.0):
logger.info(f"Starting union_tool_and_circle with center at {center_inch}")
try:
radius = circle_diameter / 2.0
circle_poly = Point(center_inch).buffer(radius, resolution=64)
logger.debug(f"Created circle with radius {radius} at {center_inch}")
union_poly = tool_polygon.union(circle_poly)
logger.info(f"Completed union_tool_and_circle, result area: {union_poly.area}")
return union_poly
except Exception as e:
logger.error(f"Error in union_tool_and_circle: {e}")
raise
def build_tool_polygon(points_inch):
logger.info(f"Starting build_tool_polygon with {len(points_inch)} points")
try:
polygon = Polygon(points_inch)
logger.info(f"Completed build_tool_polygon, polygon area: {polygon.area}")
return polygon
except Exception as e:
logger.error(f"Error in build_tool_polygon: {e}")
raise
def polygon_to_exterior_coords(poly):
logger.info(f"Starting polygon_to_exterior_coords with polygon type {poly.geom_type}")
try:
# Handle GeometryCollection case specifically
if poly.geom_type == "GeometryCollection":
logger.warning("Converting GeometryCollection to Polygon")
# Find the largest geometry in the collection that has an exterior
largest_area = 0
largest_geom = None
for geom in poly.geoms:
if hasattr(geom, 'area') and geom.area > largest_area:
if hasattr(geom, 'exterior') or geom.geom_type == "MultiPolygon":
largest_area = geom.area
largest_geom = geom
if largest_geom is None:
logger.warning("No valid geometry found in GeometryCollection")
return []
poly = largest_geom
if poly.geom_type == "MultiPolygon":
logger.debug("Converting MultiPolygon to single Polygon")
biggest = max(poly.geoms, key=lambda g: g.area)
poly = biggest
if not hasattr(poly, 'exterior') or poly.exterior is None:
logger.warning("Polygon has no exterior")
return []
coords = list(poly.exterior.coords)
logger.info(f"Completed polygon_to_exterior_coords with {len(coords)} coordinates")
return coords
except Exception as e:
logger.error(f"Error in polygon_to_exterior_coords: {e}")
# Return empty list as fallback
return []
def place_finger_cut_adjusted(
tool_polygon: Polygon,
points_inch: list,
existing_centers: list,
all_polygons: list,
circle_diameter: float = 1.0,
min_gap: float = 0.5,
max_attempts: int = 100
) -> (Polygon, tuple):
logger.info(f"Starting place_finger_cut_adjusted with {len(points_inch)} points")
# Define fallback function for timeout case
def fallback_solution():
logger.warning("Using fallback approach for finger cut placement")
candidate_center = points_inch[len(points_inch) // 2]
radius = circle_diameter / 2.0
candidate_circle = Point(candidate_center).buffer(radius, resolution=64)
try:
union_poly = tool_polygon.union(candidate_circle)
except Exception as e:
logger.warning(f"Fallback union failed, using buffer trick: {e}")
union_poly = tool_polygon.buffer(0).union(candidate_circle.buffer(0))
existing_centers.append(candidate_center)
logger.info(f"Used fallback finger cut at center {candidate_center}")
return union_poly, candidate_center
needed_center_distance = circle_diameter + min_gap
radius = circle_diameter / 2.0
# Limit points to prevent timeout - use a subset for efficient processing
if len(points_inch) > 100:
logger.info(f"Limiting points from {len(points_inch)} to 100 for efficiency")
step = len(points_inch) // 100
points_inch = points_inch[::step]
# Randomize candidate points order
indices = list(range(len(points_inch)))
random.shuffle(indices)
logger.debug(f"Shuffled {len(indices)} point indices")
# Use a non-blocking timeout approach with explicit time checks
start_time = time.time()
timeout_seconds = 5
attempts = 0
try:
while attempts < max_attempts:
# Check if we're approaching the timeout
current_time = time.time()
if current_time - start_time > timeout_seconds - 0.1: # Leave 0.1s margin
logger.warning(f"Approaching timeout after {attempts} attempts")
return fallback_solution()
# Process a batch of points to improve efficiency
for i in indices:
# Check timeout frequently
if time.time() - start_time > timeout_seconds - 0.05:
logger.warning("Timeout during point processing")
return fallback_solution()
cx, cy = points_inch[i]
# Reduce the number of adjustments to speed up processing
for dx, dy in [(0,0), (-0.2,0), (0.2,0), (0,0.2), (0,-0.2)]:
candidate_center = (cx + dx, cy + dy)
# Quick check for existing centers distance
if any(np.hypot(candidate_center[0] - ex, candidate_center[1] - ey) < needed_center_distance
for ex, ey in existing_centers):
continue
# Create candidate circle
candidate_circle = Point(candidate_center).buffer(radius, resolution=32) # Reduced resolution
# Quick geometric checks
if tool_polygon.contains(candidate_circle) or not candidate_circle.intersects(tool_polygon):
continue
# Check intersection area - use simplified geometry for speed
try:
inter_area = candidate_circle.intersection(tool_polygon).area
if inter_area <= 0 or inter_area >= candidate_circle.area:
continue
except Exception:
continue
# Quick distance check to other polygons
too_close = False
for other_poly in all_polygons:
if other_poly.equals(tool_polygon):
continue
if other_poly.distance(candidate_circle) < min_gap:
too_close = True
break
if too_close:
continue
# Attempt the union
try:
union_poly = tool_polygon.union(candidate_circle)
# Check if we got a multi-polygon when we don't want one
if union_poly.geom_type == "MultiPolygon" and len(union_poly.geoms) > 1:
continue
# Check if the union actually changed anything
if union_poly.equals(tool_polygon):
continue
except Exception:
continue
# We found a valid candidate
existing_centers.append(candidate_center)
logger.info(f"Completed place_finger_cut_adjusted successfully at center {candidate_center}")
return union_poly, candidate_center
attempts += 1
# If we've made several attempts and are running out of time, use fallback
if attempts >= max_attempts // 2 and (time.time() - start_time) > timeout_seconds * 0.8:
logger.warning(f"Approaching timeout after {attempts} attempts")
return fallback_solution()
logger.debug(f"Completed attempt {attempts}/{max_attempts}")
# If we reached max attempts without finding a solution
logger.warning(f"No suitable finger cut found after {max_attempts} attempts, using fallback")
return fallback_solution()
except Exception as e:
logger.error(f"Error in place_finger_cut_adjusted: {e}")
return fallback_solution()
def save_dxf_spline(offset_value,inflated_contours, scaling_factor, height, finger_clearance=False):
logger.info(f"Starting save_dxf_spline with {len(inflated_contours)} contours")
degree = 3
closed = True
try:
doc = ezdxf.new(units=0)
doc.units = ezdxf.units.IN
doc.header["$INSUNITS"] = ezdxf.units.IN
msp = doc.modelspace()
finger_cut_centers = []
final_polygons_inch = []
for idx, contour in enumerate(inflated_contours):
logger.debug(f"Processing contour {idx+1}/{len(inflated_contours)}")
try:
resampled_contour = resample_contour(contour)
points_inch = [(x * scaling_factor, (height - y) * scaling_factor) for x, y in resampled_contour]
if len(points_inch) < 3:
logger.warning(f"Skipping contour {idx}: insufficient points ({len(points_inch)})")
continue
if np.linalg.norm(np.array(points_inch[0]) - np.array(points_inch[-1])) > 1e-2:
logger.debug("Closing contour by adding first point to end")
points_inch.append(points_inch[0])
tool_polygon = build_tool_polygon(points_inch)
if finger_clearance:
logger.debug("Applying finger clearance")
try:
# Use a hard 5-second timeout for the entire finger cut operation
start_time = time.time()
union_poly, center = place_finger_cut_adjusted(
tool_polygon,
points_inch,
finger_cut_centers,
final_polygons_inch,
circle_diameter=1.0,
min_gap=(0.5+offset_value),
max_attempts=100
)
# Check if we exceeded the timeout anyway
if time.time() - start_time > 5:
logger.warning(f"Finger cut took too long for contour {idx} ({time.time() - start_time:.2f}s)")
if union_poly is not None:
tool_polygon = union_poly
logger.debug(f"Applied finger cut at {center}")
except Exception as e:
logger.warning(f"Finger cut failed for contour {idx}: {e}, using original polygon")
exterior_coords = polygon_to_exterior_coords(tool_polygon)
if len(exterior_coords) < 3:
logger.warning(f"Skipping contour {idx}: insufficient exterior points ({len(exterior_coords)})")
continue
for existing_poly in final_polygons_inch:
if tool_polygon.intersects(existing_poly):
# Check if the intersection is more than just touching points
intersection = tool_polygon.intersection(existing_poly)
# If the intersection has ANY area (not just points touching)
if intersection.area > 0: # Zero tolerance for overlap
logger.error(f"Polygon {idx} overlaps with an existing polygon")
raise FingerCutOverlapError("There was an overlap with fingercuts... Please try again to generate dxf.")
msp.add_spline(exterior_coords, degree=degree, dxfattribs={"layer": "TOOLS"})
final_polygons_inch.append(tool_polygon)
logger.debug(f"Added spline for contour {idx}")
except ValueError as e:
logger.warning(f"Skipping contour {idx}: {e}")
logger.info(f"Completed save_dxf_spline with {len(final_polygons_inch)} successful polygons")
return doc, final_polygons_inch
except Exception as e:
logger.error(f"Error in save_dxf_spline: {e}")
raise
def add_rectangular_boundary(doc, polygons_inch, boundary_length, boundary_width, offset_unit, annotation_text="", image_height_in=None, image_width_in=None):
msp = doc.modelspace()
# Convert from mm if necessary
if offset_unit.lower() == "mm":
if boundary_length < 50:
boundary_length = boundary_length * 25.4
if boundary_width < 50:
boundary_width = boundary_width * 25.4
boundary_length_in = boundary_length / 25.4
boundary_width_in = boundary_width / 25.4
else:
boundary_length_in = boundary_length
boundary_width_in = boundary_width
# Compute bounding box of inner contours
min_x = float("inf")
min_y = float("inf")
max_x = -float("inf")
max_y = -float("inf")
for poly in polygons_inch:
b = poly.bounds
min_x = min(min_x, b[0])
min_y = min(min_y, b[1])
max_x = max(max_x, b[2])
max_y = max(max_y, b[3])
if min_x == float("inf"):
print("No tool polygons found, skipping boundary.")
return None
# Compute inner bounding box dimensions
inner_width = max_x - min_x
inner_length = max_y - min_y
# Set clearance margins
clearance_side = 0.25 # left/right clearance
clearance_tb = 0.25 # top/bottom clearance
if annotation_text.strip():
clearance_tb = 0.75
# Calculate center of inner contours
center_x = (min_x + max_x) / 2
center_y = (min_y + max_y) / 2
# Draw rectangle centered at (center_x, center_y)
left = center_x - boundary_width_in / 2
right = center_x + boundary_width_in / 2
bottom = center_y - boundary_length_in / 2
top = center_y + boundary_length_in / 2
rect_coords = [(left, bottom), (right, bottom), (right, top), (left, top), (left, bottom)]
from shapely.geometry import Polygon as ShapelyPolygon
boundary_polygon = ShapelyPolygon(rect_coords)
msp.add_lwpolyline(rect_coords, close=True, dxfattribs={"layer": "BOUNDARY"})
text_top = boundary_polygon.bounds[1] + 1
too_small = boundary_width_in < inner_width + 2 * clearance_side or boundary_length_in < inner_length + 2 * clearance_tb
if too_small:
raise BoundaryOverlapError("Error: The specified boundary dimensions are too small and overlap with the inner contours. Please provide larger value for boundary length and width.")
if annotation_text.strip() and text_top > min_y - 1:
raise TextOverlapError("Error: The text is too close to the inner contours. Please provide larger value for boundary length and width.")
return boundary_polygon
def draw_polygons_inch(polygons_inch, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
for poly in polygons_inch:
if poly.geom_type == "MultiPolygon":
for subpoly in poly.geoms:
draw_single_polygon(subpoly, image_rgb, scaling_factor, image_height, color, thickness)
else:
draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color, thickness)
def draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color=(0,0,255), thickness=2):
ext = list(poly.exterior.coords)
if len(ext) < 3:
return
pts_px = []
for (x_in, y_in) in ext:
px = int(x_in / scaling_factor)
py = int(image_height - (y_in / scaling_factor))
pts_px.append([px, py])
pts_px = np.array(pts_px, dtype=np.int32)
cv2.polylines(image_rgb, [pts_px], isClosed=True, color=color, thickness=thickness, lineType=cv2.LINE_AA)
# ---------------------
# Main Predict Function with Finger Cut Clearance, Boundary Box, Annotation and Sharpness Enhancement
# ---------------------
def predict(
image: Union[str, bytes, np.ndarray],
offset_value: float,
offset_unit: str, # "mm" or "inches"
finger_clearance: str, # "Yes" or "No"
add_boundary: str, # "Yes" or "No"
boundary_length: float,
boundary_width: float,
annotation_text: str
):
overall_start = time.time()
# Convert image to NumPy array if needed
if isinstance(image, str):
if os.path.exists(image):
image = np.array(Image.open(image).convert("RGB"))
else:
try:
image = np.array(Image.open(io.BytesIO(base64.b64decode(image))).convert("RGB"))
except Exception:
raise ValueError("Invalid base64 image data")
# Apply brightness and sharpness enhancement
if isinstance(image, np.ndarray):
pil_image = Image.fromarray(image)
enhanced_image = ImageEnhance.Sharpness(pil_image).enhance(1.5)
image = np.array(enhanced_image)
# ---------------------
# 1) Detect the drawer with YOLOWorld (or use original image if not detected)
# ---------------------
drawer_detected = True
try:
t = time.time()
drawer_img = yolo_detect(image)
print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
except DrawerNotDetectedError as e:
print(f"Drawer not detected: {e}, using original image.")
drawer_detected = False
drawer_img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Process the image (either cropped drawer or original)
t = time.time()
if drawer_detected:
# For detected drawers: shrink and square
shrunked_img = make_square(shrink_bbox(drawer_img, 0.95))
else:
# For non-drawer images: keep original dimensions
shrunked_img = drawer_img # Already in BGR format from above
del drawer_img
gc.collect()
print("Image processing completed in {:.2f} seconds".format(time.time() - t))
# ---------------------
# 2) Detect the reference box with YOLO (now works on either cropped or original image)
# ---------------------
try:
t = time.time()
reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img)
print("Reference coin detection completed in {:.2f} seconds".format(time.time() - t))
except ReferenceBoxNotDetectedError as e:
return None, None, None, None, f"Error: {str(e)}"
# ---------------------
# 3) Remove background of the reference box to compute scaling factor
# ---------------------
t = time.time()
reference_obj_img = make_square(reference_obj_img)
reference_square_mask = remove_bg_u2netp(reference_obj_img)
reference_square_mask= resize_img(reference_square_mask,(reference_obj_img.shape[1],reference_obj_img.shape[0]))
print("Reference image processing completed in {:.2f} seconds".format(time.time() - t))
t = time.time()
try:
cv2.imwrite("mask.jpg", cv2.cvtColor(reference_obj_img, cv2.COLOR_RGB2GRAY))
scaling_factor = calculate_scaling_factor(
target_image=reference_square_mask,
reference_obj_size_mm=0.955,
feature_detector="ORB",
)
except ZeroDivisionError:
scaling_factor = None
print("Error calculating scaling factor: Division by zero")
except Exception as e:
scaling_factor = None
print(f"Error calculating scaling factor: {e}")
if scaling_factor is None or scaling_factor == 0:
scaling_factor = 0.7
print("Using default scaling factor of 0.7 due to calculation error")
gc.collect()
print("Scaling factor determined: {}".format(scaling_factor))
# ---------------------
# 4) Optional boundary dimension checks (now without size limits)
# ---------------------
if add_boundary.lower() == "yes":
if offset_unit.lower() == "mm":
if boundary_length < 50:
boundary_length = boundary_length * 25.4
if boundary_width < 50:
boundary_width = boundary_width * 25.4
boundary_length_in = boundary_length / 25.4
boundary_width_in = boundary_width / 25.4
else:
boundary_length_in = boundary_length
boundary_width_in = boundary_width
# ---------------------
# 5) Remove background from the shrunked drawer image (main objects)
# ---------------------
if offset_unit.lower() == "mm":
if offset_value < 1:
offset_value = offset_value * 25.4
offset_inches = offset_value / 25.4
if offset_value==0:
offset_value = offset_value * 25.4
offset_inches = offset_value / 25.4
offset_inches+=0.005
else:
offset_inches = offset_value
if offset_inches==0:
offset_inches+=0.005
t = time.time()
orig_size = shrunked_img.shape[:2]
objects_mask = remove_bg(shrunked_img)
processed_size = objects_mask.shape[:2]
objects_mask = exclude_scaling_box(objects_mask, scaling_box_coords, orig_size, processed_size, expansion_factor=1.2)
objects_mask = resize_img(objects_mask, (shrunked_img.shape[1], shrunked_img.shape[0]))
del scaling_box_coords
gc.collect()
print("Object masking completed in {:.2f} seconds".format(time.time() - t))
# Dilate mask by offset_pixels
t = time.time()
offset_pixels = (offset_inches / scaling_factor) * 2 + 1 if scaling_factor != 0 else 1
dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
del objects_mask
gc.collect()
print("Mask dilation completed in {:.2f} seconds".format(time.time() - t))
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
# ---------------------
# 6) Extract outlines from the mask and convert them to DXF splines
# ---------------------
t = time.time()
outlines, contours = extract_outlines(dilated_mask)
print("Outline extraction completed in {:.2f} seconds".format(time.time() - t))
output_img = shrunked_img.copy()
del shrunked_img
gc.collect()
t = time.time()
use_finger_clearance = True if finger_clearance.lower() == "yes" else False
doc, final_polygons_inch = save_dxf_spline(
offset_inches,contours, scaling_factor, processed_size[0], finger_clearance=use_finger_clearance
)
del contours
gc.collect()
print("DXF generation completed in {:.2f} seconds".format(time.time() - t))
# ---------------------
# Compute bounding box of inner tool contours BEFORE adding optional boundary
# ---------------------
inner_min_x = float("inf")
inner_min_y = float("inf")
inner_max_x = -float("inf")
inner_max_y = -float("inf")
for poly in final_polygons_inch:
b = poly.bounds
inner_min_x = min(inner_min_x, b[0])
inner_min_y = min(inner_min_y, b[1])
inner_max_x = max(inner_max_x, b[2])
inner_max_y = max(inner_max_y, b[3])
# ---------------------
# 7) Add optional rectangular boundary
# ---------------------
boundary_polygon = None
if add_boundary.lower() == "yes":
boundary_polygon = add_rectangular_boundary(
doc,
final_polygons_inch,
boundary_length,
boundary_width,
offset_unit,
annotation_text,
image_height_in=output_img.shape[0] * scaling_factor,
image_width_in=output_img.shape[1] * scaling_factor
)
if boundary_polygon is not None:
final_polygons_inch.append(boundary_polygon)
# ---------------------
# 8) Add annotation text (if provided) in the DXF
# ---------------------
msp = doc.modelspace()
if annotation_text.strip():
if boundary_polygon is not None:
text_height_dxf = 0.75
text_y_dxf = boundary_polygon.bounds[1] + 0.25
font = get_font_face("Arial")
# Create text paths first
paths = text2path.make_paths_from_str(
annotation_text.strip().upper(),
font=font,
size=text_height_dxf,
align=TextEntityAlignment.LEFT
)
# Calculate actual text width from the path's bounds
text_bbox = path.bbox(paths)
#text_width = text_bbox[2] - text_bbox[0] # xmax - xmin
#text_width = text_bbox.width
# Calculate center point of inner tool contours
center_x = (inner_min_x + inner_max_x) / 2.0
text_width = text_bbox.extmax.x - text_bbox.extmin.x
# Calculate starting x position for truly centered text
text_x = center_x - (text_width / 2.0)
# Create a translation matrix
translation = ezdxf.math.Matrix44.translate(text_x, text_y_dxf, 0)
# Apply the translation to each path
translated_paths = [p.transform(translation) for p in paths]
# Render the paths as splines and polylines
path.render_splines_and_polylines(
msp,
translated_paths,
dxfattribs={"layer": "ANNOTATION", "color": 7}
)
# Save the DXF
dxf_filepath = os.path.join("./outputs", "out.dxf")
doc.saveas(dxf_filepath)
# ---------------------
# 9) For the preview images, draw the polygons and place text similarly
# ---------------------
draw_polygons_inch(final_polygons_inch, output_img, scaling_factor, processed_size[0], color=(0, 0, 255), thickness=2)
new_outlines = np.ones_like(output_img) * 255
draw_polygons_inch(final_polygons_inch, new_outlines, scaling_factor, processed_size[0], color=(0, 0, 255), thickness=2)
if annotation_text.strip():
if boundary_polygon is not None:
text_height_cv = 0.75
text_x_img = int(((inner_min_x + inner_max_x) / 2.0) / scaling_factor)
text_y_in = boundary_polygon.bounds[1] + 0.25
text_y_img = int(processed_size[0] - (text_y_in / scaling_factor))
org = (text_x_img - int(len(annotation_text.strip()) * 6), text_y_img)
# Method 2: Use two different thicknesses
# Draw thicker outline
temp_img = np.zeros_like(output_img)
cv2.putText(
temp_img,
annotation_text.strip().upper(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
2,
(0, 0, 255), # Red color
4, # Thicker outline
cv2.LINE_AA
)
cv2.putText(
temp_img,
annotation_text.strip().upper(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
2,
(0, 0, 0), # Black to create hole
2, # Thinner inner part
cv2.LINE_AA
)
outline_mask = cv2.cvtColor(temp_img, cv2.COLOR_BGR2GRAY)
_, outline_mask = cv2.threshold(outline_mask, 1, 255, cv2.THRESH_BINARY)
output_img[outline_mask > 0] = temp_img[outline_mask > 0]
cv2.putText(
new_outlines,
annotation_text.strip().upper(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
2,
(0, 0, 255), # Red color
4, # Thicker outline
cv2.LINE_AA
)
cv2.putText(
new_outlines,
annotation_text.strip().upper(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
2,
(255, 255, 255), # Inner text in white
2, # Thinner inner part
cv2.LINE_AA
)
else:
text_height_cv = 0.75
text_x_img = int(((inner_min_x + inner_max_x) / 2.0) / scaling_factor)
text_y_in = inner_min_y - 0.125 - text_height_cv
text_y_img = int(processed_size[0] - (text_y_in / scaling_factor))
org = (text_x_img - int(len(annotation_text.strip()) * 6), text_y_img)
cv2.putText(
output_img,
annotation_text.strip(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
1.2,
(0, 0, 255),
2,
cv2.LINE_AA
)
cv2.putText(
new_outlines,
annotation_text.strip(),
org,
cv2.FONT_HERSHEY_SIMPLEX,
1.2,
(0, 0, 255),
2,
cv2.LINE_AA
)
outlines_color = cv2.cvtColor(new_outlines, cv2.COLOR_BGR2RGB)
print("Total prediction time: {:.2f} seconds".format(time.time() - overall_start))
return (
cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB),
outlines_color,
dxf_filepath,
dilated_mask,
str(scaling_factor)
)
# ---------------------
# Gradio Interface
# ---------------------
if __name__ == "__main__":
os.makedirs("./outputs", exist_ok=True)
def gradio_predict(img, offset, offset_unit, finger_clearance, add_boundary, boundary_length, boundary_width, annotation_text):
try:
return predict(img, offset, offset_unit, finger_clearance, add_boundary, boundary_length, boundary_width, annotation_text)
except Exception as e:
return None, None, None, None, f"Error: {str(e)}"
iface = gr.Interface(
fn=gradio_predict,
inputs=[
gr.Image(label="Input Image"),
gr.Number(label="Offset value for Mask", value=0.075),
gr.Dropdown(label="Offset Unit", choices=["mm", "inches"], value="inches"),
gr.Dropdown(label="Add Finger Clearance?", choices=["Yes", "No"], value="Yes"),
gr.Dropdown(label="Add Rectangular Boundary?", choices=["Yes", "No"], value="Yes"),
gr.Number(label="Boundary Length", value=50, precision=2),
gr.Number(label="Boundary Width", value=50, precision=2),
gr.Textbox(label="Annotation (max 20 chars)", max_length=20, placeholder="Type up to 20 characters")
],
outputs=[
gr.Image(label="Output Image"),
gr.Image(label="Outlines of Objects"),
gr.File(label="DXF file"),
gr.Image(label="Mask"),
gr.Textbox(label="Scaling Factor (inches/pixel)")
],
examples=[
["./Test20.jpg", 0.075, "inches", "Yes", "No", 300.0, 200.0, "MyTool"],
["./Test21.jpg", 0.075, "inches", "Yes", "Yes", 300.0, 200.0, "Tool2"]
]
)
iface.launch(share=True)