Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -71,18 +71,18 @@ if not os.path.exists(reference_model_path):
|
|
71 |
reference_detector_global = YOLO(reference_model_path)
|
72 |
print("YOLO reference model loaded in {:.2f} seconds".format(time.time() - start_time))
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
device = "cpu"
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
print("Loading BiRefNet model...")
|
88 |
start_time = time.time()
|
@@ -121,14 +121,14 @@ def unload_and_reload_models():
|
|
121 |
)
|
122 |
new_birefnet.to(device)
|
123 |
new_birefnet.eval()
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
drawer_detector_global = new_drawer_detector
|
129 |
reference_detector_global = new_reference_detector
|
130 |
birefnet_global = new_birefnet
|
131 |
-
u2net_global =
|
132 |
print("Models reloaded in {:.2f} seconds".format(time.time() - start_time))
|
133 |
|
134 |
# ---------------------
|
@@ -160,24 +160,24 @@ def detect_reference_square(img: np.ndarray):
|
|
160 |
)
|
161 |
|
162 |
# Use U2NETP for reference background removal.
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
|
182 |
# Use BiRefNet for main object background removal.
|
183 |
def remove_bg(image: np.ndarray) -> np.ndarray:
|
@@ -492,7 +492,7 @@ def predict(
|
|
492 |
# ---------------------
|
493 |
t = time.time()
|
494 |
reference_obj_img = make_square(reference_obj_img)
|
495 |
-
reference_square_mask =
|
496 |
print("Reference image processing completed in {:.2f} seconds".format(time.time() - t))
|
497 |
|
498 |
t = time.time()
|
|
|
71 |
reference_detector_global = YOLO(reference_model_path)
|
72 |
print("YOLO reference model loaded in {:.2f} seconds".format(time.time() - start_time))
|
73 |
|
74 |
+
print("Loading U²-Net model for reference background removal (U2NETP)...")
|
75 |
+
start_time = time.time()
|
76 |
+
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
|
77 |
+
if not os.path.exists(u2net_model_path):
|
78 |
+
print("Caching U²-Net model to", u2net_model_path)
|
79 |
+
shutil.copy("u2netp.pth", u2net_model_path)
|
80 |
+
u2net_global = U2NETP(3, 1)
|
81 |
+
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
|
82 |
device = "cpu"
|
83 |
+
u2net_global.to(device)
|
84 |
+
u2net_global.eval()
|
85 |
+
print("U²-Net model loaded in {:.2f} seconds".format(time.time() - start_time))
|
86 |
|
87 |
print("Loading BiRefNet model...")
|
88 |
start_time = time.time()
|
|
|
121 |
)
|
122 |
new_birefnet.to(device)
|
123 |
new_birefnet.eval()
|
124 |
+
new_u2net = U2NETP(3, 1)
|
125 |
+
new_u2net.load_state_dict(torch.load(os.path.join(CACHE_DIR, "u2netp.pth"), map_location="cpu"))
|
126 |
+
new_u2net.to(device)
|
127 |
+
new_u2net.eval()
|
128 |
drawer_detector_global = new_drawer_detector
|
129 |
reference_detector_global = new_reference_detector
|
130 |
birefnet_global = new_birefnet
|
131 |
+
u2net_global = new_u2net
|
132 |
print("Models reloaded in {:.2f} seconds".format(time.time() - start_time))
|
133 |
|
134 |
# ---------------------
|
|
|
160 |
)
|
161 |
|
162 |
# Use U2NETP for reference background removal.
|
163 |
+
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
|
164 |
+
t = time.time()
|
165 |
+
image_pil = Image.fromarray(image)
|
166 |
+
transform_u2netp = transforms.Compose([
|
167 |
+
transforms.Resize((320, 320)),
|
168 |
+
transforms.ToTensor(),
|
169 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
170 |
+
])
|
171 |
+
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to("cpu")
|
172 |
+
with torch.no_grad():
|
173 |
+
outputs = u2net_global(input_tensor)
|
174 |
+
pred = outputs[0]
|
175 |
+
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
|
176 |
+
pred_np = pred.squeeze().cpu().numpy()
|
177 |
+
pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
|
178 |
+
pred_np = (pred_np * 255).astype(np.uint8)
|
179 |
+
print("U2NETP background removal completed in {:.2f} seconds".format(time.time() - t))
|
180 |
+
return pred_np
|
181 |
|
182 |
# Use BiRefNet for main object background removal.
|
183 |
def remove_bg(image: np.ndarray) -> np.ndarray:
|
|
|
492 |
# ---------------------
|
493 |
t = time.time()
|
494 |
reference_obj_img = make_square(reference_obj_img)
|
495 |
+
reference_square_mask = remove_bg_u2netp(reference_obj_img)
|
496 |
print("Reference image processing completed in {:.2f} seconds".format(time.time() - t))
|
497 |
|
498 |
t = time.time()
|