Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -159,27 +159,23 @@ def detect_reference_square(img: np.ndarray):
|
|
159 |
res[0].cpu().boxes.xyxy[0]
|
160 |
)
|
161 |
|
162 |
-
#
|
163 |
-
def
|
|
|
164 |
t = time.time()
|
165 |
image_pil = Image.fromarray(image)
|
166 |
-
|
167 |
-
transforms.Resize((320, 320)),
|
168 |
-
transforms.ToTensor(),
|
169 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
170 |
-
])
|
171 |
-
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to("cpu")
|
172 |
with torch.no_grad():
|
173 |
-
|
174 |
-
pred =
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
print("
|
180 |
-
return
|
181 |
-
|
182 |
-
#
|
183 |
def remove_bg(image: np.ndarray) -> np.ndarray:
|
184 |
t = time.time()
|
185 |
image_pil = Image.fromarray(image)
|
@@ -191,7 +187,7 @@ def remove_bg(image: np.ndarray) -> np.ndarray:
|
|
191 |
scale_ratio = 1024 / max(image_pil.size)
|
192 |
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
|
193 |
result = np.array(pred_pil.resize(scaled_size))
|
194 |
-
print("BiRefNet background removal completed in {:.2f} seconds".format(time.time() - t))
|
195 |
return result
|
196 |
|
197 |
def make_square(img: np.ndarray):
|
@@ -473,7 +469,6 @@ def predict(
|
|
473 |
print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
|
474 |
except DrawerNotDetectedError as e:
|
475 |
return None, None, None, None, f"Error: {str(e)}"
|
476 |
-
# Ensure that shrunked_img is defined only after successful detection.
|
477 |
t = time.time()
|
478 |
shrunked_img = make_square(shrink_bbox(drawer_img, 0.90))
|
479 |
del drawer_img
|
@@ -495,9 +490,9 @@ def predict(
|
|
495 |
# ---------------------
|
496 |
t = time.time()
|
497 |
reference_obj_img = make_square(reference_obj_img)
|
498 |
-
|
|
|
499 |
print("Reference image processing completed in {:.2f} seconds".format(time.time() - t))
|
500 |
-
|
501 |
t = time.time()
|
502 |
try:
|
503 |
cv2.imwrite("mask.jpg", cv2.cvtColor(reference_obj_img, cv2.COLOR_RGB2GRAY))
|
@@ -570,7 +565,6 @@ def predict(
|
|
570 |
del objects_mask
|
571 |
gc.collect()
|
572 |
print("Mask dilation completed in {:.2f} seconds".format(time.time() - t))
|
573 |
-
|
574 |
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
|
575 |
|
576 |
# ---------------------
|
@@ -579,16 +573,12 @@ def predict(
|
|
579 |
t = time.time()
|
580 |
outlines, contours = extract_outlines(dilated_mask)
|
581 |
print("Outline extraction completed in {:.2f} seconds".format(time.time() - t))
|
582 |
-
|
583 |
output_img = shrunked_img.copy()
|
584 |
del shrunked_img
|
585 |
gc.collect()
|
586 |
-
|
587 |
t = time.time()
|
588 |
use_finger_clearance = True if finger_clearance.lower() == "yes" else False
|
589 |
-
doc, final_polygons_inch = save_dxf_spline(
|
590 |
-
contours, scaling_factor, processed_size[0], finger_clearance=use_finger_clearance
|
591 |
-
)
|
592 |
del contours
|
593 |
gc.collect()
|
594 |
print("DXF generation completed in {:.2f} seconds".format(time.time() - t))
|
@@ -633,14 +623,8 @@ def predict(
|
|
633 |
text_x = (inner_min_x + inner_max_x) / 2.0
|
634 |
text_height_dxf = 0.5
|
635 |
text_y_dxf = inner_min_y - 0.125 - text_height_dxf
|
636 |
-
text_entity = msp.add_text(
|
637 |
-
|
638 |
-
dxfattribs={
|
639 |
-
"height": text_height_dxf,
|
640 |
-
"layer": "ANNOTATION",
|
641 |
-
"style": "Bold"
|
642 |
-
}
|
643 |
-
)
|
644 |
text_entity.dxf.insert = (text_x, text_y_dxf)
|
645 |
|
646 |
# Save the DXF
|
@@ -660,27 +644,8 @@ def predict(
|
|
660 |
text_y_in = inner_min_y - 0.125 - text_height_cv
|
661 |
text_y_img = int(processed_size[0] - (text_y_in / scaling_factor))
|
662 |
org = (text_x_img - int(len(annotation_text.strip()) * 6), text_y_img)
|
663 |
-
|
664 |
-
cv2.putText(
|
665 |
-
output_img,
|
666 |
-
annotation_text.strip(),
|
667 |
-
org,
|
668 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
669 |
-
1.3,
|
670 |
-
(0, 0, 255),
|
671 |
-
3,
|
672 |
-
cv2.LINE_AA
|
673 |
-
)
|
674 |
-
cv2.putText(
|
675 |
-
new_outlines,
|
676 |
-
annotation_text.strip(),
|
677 |
-
org,
|
678 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
679 |
-
1.3,
|
680 |
-
(0, 0, 255),
|
681 |
-
3,
|
682 |
-
cv2.LINE_AA
|
683 |
-
)
|
684 |
|
685 |
# Restore brightness for display purposes:
|
686 |
# Since we reduced brightness by 0.5 during preprocessing,
|
@@ -691,14 +656,11 @@ def predict(
|
|
691 |
|
692 |
outlines_color = cv2.cvtColor(new_outlines, cv2.COLOR_BGR2RGB)
|
693 |
print("Total prediction time: {:.2f} seconds".format(time.time() - overall_start))
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
dilated_mask,
|
700 |
-
str(scaling_factor)
|
701 |
-
)
|
702 |
|
703 |
# ---------------------
|
704 |
# Gradio Interface
|
@@ -734,5 +696,4 @@ if __name__ == "__main__":
|
|
734 |
["./Test21.jpg", 0.075, "inches", "Yes", "Yes", 300.0, 200.0, "Tool2"]
|
735 |
]
|
736 |
)
|
737 |
-
iface.launch(share=True)
|
738 |
-
|
|
|
159 |
res[0].cpu().boxes.xyxy[0]
|
160 |
)
|
161 |
|
162 |
+
# For reference background removal, we now use BiRefNet.
|
163 |
+
def remove_bg_reference(image: np.ndarray) -> np.ndarray:
|
164 |
+
# Use the same BiRefNet method as for the main object.
|
165 |
t = time.time()
|
166 |
image_pil = Image.fromarray(image)
|
167 |
+
input_images = transform_image_global(image_pil).unsqueeze(0).to("cpu")
|
|
|
|
|
|
|
|
|
|
|
168 |
with torch.no_grad():
|
169 |
+
preds = birefnet_global(input_images)[-1].sigmoid().cpu()
|
170 |
+
pred = preds[0].squeeze()
|
171 |
+
pred_pil = transforms.ToPILImage()(pred)
|
172 |
+
scale_ratio = 1024 / max(image_pil.size)
|
173 |
+
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
|
174 |
+
result = np.array(pred_pil.resize(scaled_size))
|
175 |
+
print("BiRefNet (reference) background removal completed in {:.2f} seconds".format(time.time() - t))
|
176 |
+
return result
|
177 |
+
|
178 |
+
# The main background removal for objects still uses BiRefNet.
|
179 |
def remove_bg(image: np.ndarray) -> np.ndarray:
|
180 |
t = time.time()
|
181 |
image_pil = Image.fromarray(image)
|
|
|
187 |
scale_ratio = 1024 / max(image_pil.size)
|
188 |
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
|
189 |
result = np.array(pred_pil.resize(scaled_size))
|
190 |
+
print("BiRefNet (object) background removal completed in {:.2f} seconds".format(time.time() - t))
|
191 |
return result
|
192 |
|
193 |
def make_square(img: np.ndarray):
|
|
|
469 |
print("Drawer detection completed in {:.2f} seconds".format(time.time() - t))
|
470 |
except DrawerNotDetectedError as e:
|
471 |
return None, None, None, None, f"Error: {str(e)}"
|
|
|
472 |
t = time.time()
|
473 |
shrunked_img = make_square(shrink_bbox(drawer_img, 0.90))
|
474 |
del drawer_img
|
|
|
490 |
# ---------------------
|
491 |
t = time.time()
|
492 |
reference_obj_img = make_square(reference_obj_img)
|
493 |
+
# Use BiRefNet for reference background removal instead of U2NETP:
|
494 |
+
reference_square_mask = remove_bg_reference(reference_obj_img)
|
495 |
print("Reference image processing completed in {:.2f} seconds".format(time.time() - t))
|
|
|
496 |
t = time.time()
|
497 |
try:
|
498 |
cv2.imwrite("mask.jpg", cv2.cvtColor(reference_obj_img, cv2.COLOR_RGB2GRAY))
|
|
|
565 |
del objects_mask
|
566 |
gc.collect()
|
567 |
print("Mask dilation completed in {:.2f} seconds".format(time.time() - t))
|
|
|
568 |
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
|
569 |
|
570 |
# ---------------------
|
|
|
573 |
t = time.time()
|
574 |
outlines, contours = extract_outlines(dilated_mask)
|
575 |
print("Outline extraction completed in {:.2f} seconds".format(time.time() - t))
|
|
|
576 |
output_img = shrunked_img.copy()
|
577 |
del shrunked_img
|
578 |
gc.collect()
|
|
|
579 |
t = time.time()
|
580 |
use_finger_clearance = True if finger_clearance.lower() == "yes" else False
|
581 |
+
doc, final_polygons_inch = save_dxf_spline(contours, scaling_factor, processed_size[0], finger_clearance=use_finger_clearance)
|
|
|
|
|
582 |
del contours
|
583 |
gc.collect()
|
584 |
print("DXF generation completed in {:.2f} seconds".format(time.time() - t))
|
|
|
623 |
text_x = (inner_min_x + inner_max_x) / 2.0
|
624 |
text_height_dxf = 0.5
|
625 |
text_y_dxf = inner_min_y - 0.125 - text_height_dxf
|
626 |
+
text_entity = msp.add_text(annotation_text.strip(),
|
627 |
+
dxfattribs={"height": text_height_dxf, "layer": "ANNOTATION", "style": "Bold"})
|
|
|
|
|
|
|
|
|
|
|
|
|
628 |
text_entity.dxf.insert = (text_x, text_y_dxf)
|
629 |
|
630 |
# Save the DXF
|
|
|
644 |
text_y_in = inner_min_y - 0.125 - text_height_cv
|
645 |
text_y_img = int(processed_size[0] - (text_y_in / scaling_factor))
|
646 |
org = (text_x_img - int(len(annotation_text.strip()) * 6), text_y_img)
|
647 |
+
cv2.putText(output_img, annotation_text.strip(), org, cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 0, 255), 3, cv2.LINE_AA)
|
648 |
+
cv2.putText(new_outlines, annotation_text.strip(), org, cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 0, 255), 3, cv2.LINE_AA)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
649 |
|
650 |
# Restore brightness for display purposes:
|
651 |
# Since we reduced brightness by 0.5 during preprocessing,
|
|
|
656 |
|
657 |
outlines_color = cv2.cvtColor(new_outlines, cv2.COLOR_BGR2RGB)
|
658 |
print("Total prediction time: {:.2f} seconds".format(time.time() - overall_start))
|
659 |
+
return (cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB),
|
660 |
+
outlines_color,
|
661 |
+
dxf_filepath,
|
662 |
+
dilated_mask,
|
663 |
+
str(scaling_factor))
|
|
|
|
|
|
|
664 |
|
665 |
# ---------------------
|
666 |
# Gradio Interface
|
|
|
696 |
["./Test21.jpg", 0.075, "inches", "Yes", "Yes", 300.0, 200.0, "Tool2"]
|
697 |
]
|
698 |
)
|
699 |
+
iface.launch(share=True)
|
|