ammariii08 commited on
Commit
d2d3e58
·
verified ·
1 Parent(s): f32744f

Upload 6 files

Browse files
Files changed (6) hide show
  1. last.pt +3 -0
  2. requirements.txt +7 -0
  3. scalingtestupdated.py +180 -0
  4. u2net.py +525 -0
  5. u2netp.pth +3 -0
  6. yolov8x-worldv2.pt +3 -0
last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ecf93886616e47bcbd997c9149521eab864aea3c4fa9ff48a95ab23d8ecf51e
3
+ size 6254691
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ transformers
2
+ ultralytics==8.3.9
3
+ ezdxf
4
+ gradio
5
+ kornia
6
+ timm
7
+ einops
scalingtestupdated.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import os
4
+ import argparse
5
+ from typing import Union
6
+ from matplotlib import pyplot as plt
7
+
8
+
9
+ class ScalingSquareDetector:
10
+ def __init__(self, feature_detector="ORB", debug=False):
11
+ """
12
+ Initialize the detector with the desired feature matching algorithm.
13
+ :param feature_detector: "ORB" or "SIFT" (default is "ORB").
14
+ :param debug: If True, saves intermediate images for debugging.
15
+ """
16
+ self.feature_detector = feature_detector
17
+ self.debug = debug
18
+ self.detector = self._initialize_detector()
19
+
20
+ def _initialize_detector(self):
21
+ """
22
+ Initialize the chosen feature detector.
23
+ :return: OpenCV detector object.
24
+ """
25
+ if self.feature_detector.upper() == "SIFT":
26
+ return cv2.SIFT_create()
27
+ elif self.feature_detector.upper() == "ORB":
28
+ return cv2.ORB_create()
29
+ else:
30
+ raise ValueError("Invalid feature detector. Choose 'ORB' or 'SIFT'.")
31
+
32
+ def find_scaling_square(
33
+ self, reference_image_path, target_image, known_size_mm, roi_margin=30
34
+ ):
35
+ """
36
+ Detect the scaling square in the target image based on the reference image.
37
+ :param reference_image_path: Path to the reference image of the square.
38
+ :param target_image_path: Path to the target image containing the square.
39
+ :param known_size_mm: Physical size of the square in millimeters.
40
+ :param roi_margin: Margin to expand the ROI around the detected square (in pixels).
41
+ :return: Scaling factor (mm per pixel).
42
+ """
43
+
44
+ contours, _ = cv2.findContours(
45
+ target_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
46
+ )
47
+
48
+ if not contours:
49
+ raise ValueError("No contours found in the cropped ROI.")
50
+
51
+ # # Select the largest square-like contour
52
+ largest_square = None
53
+ largest_square_area = 0
54
+ for contour in contours:
55
+ x_c, y_c, w_c, h_c = cv2.boundingRect(contour)
56
+ aspect_ratio = w_c / float(h_c)
57
+ if 0.9 <= aspect_ratio <= 1.1:
58
+ peri = cv2.arcLength(contour, True)
59
+ approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
60
+ if len(approx) == 4:
61
+ area = cv2.contourArea(contour)
62
+ if area > largest_square_area:
63
+ largest_square = contour
64
+ largest_square_area = area
65
+
66
+ # if largest_square is None:
67
+ # raise ValueError("No square-like contour found in the ROI.")
68
+
69
+ # Draw the largest contour on the original image
70
+ target_image_color = cv2.cvtColor(target_image, cv2.COLOR_GRAY2BGR)
71
+ cv2.drawContours(
72
+ target_image_color, largest_square, -1, (255, 0, 0), 3
73
+ )
74
+
75
+ # if self.debug:
76
+ cv2.imwrite("largest_contour.jpg", target_image_color)
77
+
78
+ # Calculate the bounding rectangle of the largest contour
79
+ x, y, w, h = cv2.boundingRect(largest_square)
80
+ square_width_px = w
81
+ square_height_px = h
82
+
83
+ # Calculate the scaling factor
84
+ avg_square_size_px = (square_width_px + square_height_px) / 2
85
+ scaling_factor = 0.5 / avg_square_size_px # mm per pixel
86
+
87
+ return scaling_factor #, square_height_px, square_width_px, roi_binary
88
+
89
+ def draw_debug_images(self, output_folder):
90
+ """
91
+ Save debug images if enabled.
92
+ :param output_folder: Directory to save debug images.
93
+ """
94
+ if self.debug:
95
+ if not os.path.exists(output_folder):
96
+ os.makedirs(output_folder)
97
+ debug_images = ["largest_contour.jpg"]
98
+ for img_name in debug_images:
99
+ if os.path.exists(img_name):
100
+ os.rename(img_name, os.path.join(output_folder, img_name))
101
+
102
+
103
+ def calculate_scaling_factor(
104
+ reference_image_path,
105
+ target_image,
106
+ known_square_size_mm=12.7,
107
+ feature_detector="ORB",
108
+ debug=False,
109
+ roi_margin=30,
110
+ ):
111
+ # Initialize detector
112
+ detector = ScalingSquareDetector(feature_detector=feature_detector, debug=debug)
113
+
114
+ # Find scaling square and calculate scaling factor
115
+ scaling_factor = detector.find_scaling_square(
116
+ reference_image_path=reference_image_path,
117
+ target_image=target_image,
118
+ known_size_mm=known_square_size_mm,
119
+ roi_margin=roi_margin,
120
+ )
121
+
122
+ # Save debug images
123
+ if debug:
124
+ detector.draw_debug_images("debug_outputs")
125
+
126
+ return scaling_factor
127
+
128
+
129
+ # Example usage:
130
+ if __name__ == "__main__":
131
+ import os
132
+ from PIL import Image
133
+ from ultralytics import YOLO
134
+ from app import yolo_detect, shrink_bbox
135
+ from ultralytics.utils.plotting import save_one_box
136
+
137
+ for idx, file in enumerate(os.listdir("./sample_images")):
138
+ img = np.array(Image.open(os.path.join("./sample_images", file)))
139
+ img = yolo_detect(img, ['box'])
140
+ model = YOLO("./last.pt")
141
+ res = model.predict(img, conf=0.6)
142
+
143
+ box_img = save_one_box(res[0].cpu().boxes.xyxy, im=res[0].orig_img, save=False)
144
+ # img = shrink_bbox(box_img, 1.20)
145
+ cv2.imwrite(f"./outputs/{idx}_{file}", box_img)
146
+
147
+ print("File: ",f"./outputs/{idx}_{file}")
148
+ try:
149
+
150
+ scaling_factor = calculate_scaling_factor(
151
+ reference_image_path="./Reference_ScalingBox.jpg",
152
+ target_image=box_img,
153
+ known_square_size_mm=12.7,
154
+ feature_detector="ORB",
155
+ debug=False,
156
+ roi_margin=90,
157
+ )
158
+ # cv2.imwrite(f"./outputs/{idx}_binary_{file}", roi_binary)
159
+
160
+ # Square size in mm
161
+ # square_size_mm = 12.7
162
+
163
+ # # Compute the calculated scaling factors and compare
164
+ # calculated_scaling_factor = square_size_mm / height_px
165
+ # discrepancy = abs(calculated_scaling_factor - scaling_factor)
166
+ # import pprint
167
+ # pprint.pprint({
168
+ # "height_px": height_px,
169
+ # "width_px": width_px,
170
+ # "given_scaling_factor": scaling_factor,
171
+ # "calculated_scaling_factor": calculated_scaling_factor,
172
+ # "discrepancy": discrepancy,
173
+ # })
174
+
175
+
176
+ print(f"Scaling Factor (mm per pixel): {scaling_factor:.6f}")
177
+ except Exception as e:
178
+ from traceback import print_exc
179
+ print(print_exc())
180
+ print(f"Error: {e}")
u2net.py ADDED
@@ -0,0 +1,525 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ class REBNCONV(nn.Module):
6
+ def __init__(self,in_ch=3,out_ch=3,dirate=1):
7
+ super(REBNCONV,self).__init__()
8
+
9
+ self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate)
10
+ self.bn_s1 = nn.BatchNorm2d(out_ch)
11
+ self.relu_s1 = nn.ReLU(inplace=True)
12
+
13
+ def forward(self,x):
14
+
15
+ hx = x
16
+ xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
17
+
18
+ return xout
19
+
20
+ ## upsample tensor 'src' to have the same spatial size with tensor 'tar'
21
+ def _upsample_like(src,tar):
22
+
23
+ src = F.upsample(src,size=tar.shape[2:],mode='bilinear')
24
+
25
+ return src
26
+
27
+
28
+ ### RSU-7 ###
29
+ class RSU7(nn.Module):#UNet07DRES(nn.Module):
30
+
31
+ def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
32
+ super(RSU7,self).__init__()
33
+
34
+ self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
35
+
36
+ self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
37
+ self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
38
+
39
+ self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
40
+ self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
41
+
42
+ self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
43
+ self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
44
+
45
+ self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
46
+ self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
47
+
48
+ self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
49
+ self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
50
+
51
+ self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
52
+
53
+ self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
54
+
55
+ self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
56
+ self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
57
+ self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
58
+ self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
59
+ self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
60
+ self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
61
+
62
+ def forward(self,x):
63
+
64
+ hx = x
65
+ hxin = self.rebnconvin(hx)
66
+
67
+ hx1 = self.rebnconv1(hxin)
68
+ hx = self.pool1(hx1)
69
+
70
+ hx2 = self.rebnconv2(hx)
71
+ hx = self.pool2(hx2)
72
+
73
+ hx3 = self.rebnconv3(hx)
74
+ hx = self.pool3(hx3)
75
+
76
+ hx4 = self.rebnconv4(hx)
77
+ hx = self.pool4(hx4)
78
+
79
+ hx5 = self.rebnconv5(hx)
80
+ hx = self.pool5(hx5)
81
+
82
+ hx6 = self.rebnconv6(hx)
83
+
84
+ hx7 = self.rebnconv7(hx6)
85
+
86
+ hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
87
+ hx6dup = _upsample_like(hx6d,hx5)
88
+
89
+ hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
90
+ hx5dup = _upsample_like(hx5d,hx4)
91
+
92
+ hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
93
+ hx4dup = _upsample_like(hx4d,hx3)
94
+
95
+ hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
96
+ hx3dup = _upsample_like(hx3d,hx2)
97
+
98
+ hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
99
+ hx2dup = _upsample_like(hx2d,hx1)
100
+
101
+ hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
102
+
103
+ return hx1d + hxin
104
+
105
+ ### RSU-6 ###
106
+ class RSU6(nn.Module):#UNet06DRES(nn.Module):
107
+
108
+ def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
109
+ super(RSU6,self).__init__()
110
+
111
+ self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
112
+
113
+ self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
114
+ self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
115
+
116
+ self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
117
+ self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
118
+
119
+ self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
120
+ self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
121
+
122
+ self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
123
+ self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
124
+
125
+ self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
126
+
127
+ self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
128
+
129
+ self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
130
+ self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
131
+ self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
132
+ self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
133
+ self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
134
+
135
+ def forward(self,x):
136
+
137
+ hx = x
138
+
139
+ hxin = self.rebnconvin(hx)
140
+
141
+ hx1 = self.rebnconv1(hxin)
142
+ hx = self.pool1(hx1)
143
+
144
+ hx2 = self.rebnconv2(hx)
145
+ hx = self.pool2(hx2)
146
+
147
+ hx3 = self.rebnconv3(hx)
148
+ hx = self.pool3(hx3)
149
+
150
+ hx4 = self.rebnconv4(hx)
151
+ hx = self.pool4(hx4)
152
+
153
+ hx5 = self.rebnconv5(hx)
154
+
155
+ hx6 = self.rebnconv6(hx5)
156
+
157
+
158
+ hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
159
+ hx5dup = _upsample_like(hx5d,hx4)
160
+
161
+ hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
162
+ hx4dup = _upsample_like(hx4d,hx3)
163
+
164
+ hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
165
+ hx3dup = _upsample_like(hx3d,hx2)
166
+
167
+ hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
168
+ hx2dup = _upsample_like(hx2d,hx1)
169
+
170
+ hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
171
+
172
+ return hx1d + hxin
173
+
174
+ ### RSU-5 ###
175
+ class RSU5(nn.Module):#UNet05DRES(nn.Module):
176
+
177
+ def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
178
+ super(RSU5,self).__init__()
179
+
180
+ self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
181
+
182
+ self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
183
+ self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
184
+
185
+ self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
186
+ self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
187
+
188
+ self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
189
+ self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
190
+
191
+ self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
192
+
193
+ self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
194
+
195
+ self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
196
+ self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
197
+ self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
198
+ self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
199
+
200
+ def forward(self,x):
201
+
202
+ hx = x
203
+
204
+ hxin = self.rebnconvin(hx)
205
+
206
+ hx1 = self.rebnconv1(hxin)
207
+ hx = self.pool1(hx1)
208
+
209
+ hx2 = self.rebnconv2(hx)
210
+ hx = self.pool2(hx2)
211
+
212
+ hx3 = self.rebnconv3(hx)
213
+ hx = self.pool3(hx3)
214
+
215
+ hx4 = self.rebnconv4(hx)
216
+
217
+ hx5 = self.rebnconv5(hx4)
218
+
219
+ hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
220
+ hx4dup = _upsample_like(hx4d,hx3)
221
+
222
+ hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
223
+ hx3dup = _upsample_like(hx3d,hx2)
224
+
225
+ hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
226
+ hx2dup = _upsample_like(hx2d,hx1)
227
+
228
+ hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
229
+
230
+ return hx1d + hxin
231
+
232
+ ### RSU-4 ###
233
+ class RSU4(nn.Module):#UNet04DRES(nn.Module):
234
+
235
+ def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
236
+ super(RSU4,self).__init__()
237
+
238
+ self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
239
+
240
+ self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
241
+ self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
242
+
243
+ self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
244
+ self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
245
+
246
+ self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
247
+
248
+ self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
249
+
250
+ self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
251
+ self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
252
+ self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
253
+
254
+ def forward(self,x):
255
+
256
+ hx = x
257
+
258
+ hxin = self.rebnconvin(hx)
259
+
260
+ hx1 = self.rebnconv1(hxin)
261
+ hx = self.pool1(hx1)
262
+
263
+ hx2 = self.rebnconv2(hx)
264
+ hx = self.pool2(hx2)
265
+
266
+ hx3 = self.rebnconv3(hx)
267
+
268
+ hx4 = self.rebnconv4(hx3)
269
+
270
+ hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
271
+ hx3dup = _upsample_like(hx3d,hx2)
272
+
273
+ hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
274
+ hx2dup = _upsample_like(hx2d,hx1)
275
+
276
+ hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
277
+
278
+ return hx1d + hxin
279
+
280
+ ### RSU-4F ###
281
+ class RSU4F(nn.Module):#UNet04FRES(nn.Module):
282
+
283
+ def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
284
+ super(RSU4F,self).__init__()
285
+
286
+ self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
287
+
288
+ self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
289
+ self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
290
+ self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
291
+
292
+ self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
293
+
294
+ self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
295
+ self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
296
+ self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
297
+
298
+ def forward(self,x):
299
+
300
+ hx = x
301
+
302
+ hxin = self.rebnconvin(hx)
303
+
304
+ hx1 = self.rebnconv1(hxin)
305
+ hx2 = self.rebnconv2(hx1)
306
+ hx3 = self.rebnconv3(hx2)
307
+
308
+ hx4 = self.rebnconv4(hx3)
309
+
310
+ hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
311
+ hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
312
+ hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
313
+
314
+ return hx1d + hxin
315
+
316
+
317
+ ##### U^2-Net ####
318
+ class U2NET(nn.Module):
319
+
320
+ def __init__(self,in_ch=3,out_ch=1):
321
+ super(U2NET,self).__init__()
322
+
323
+ self.stage1 = RSU7(in_ch,32,64)
324
+ self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
325
+
326
+ self.stage2 = RSU6(64,32,128)
327
+ self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
328
+
329
+ self.stage3 = RSU5(128,64,256)
330
+ self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
331
+
332
+ self.stage4 = RSU4(256,128,512)
333
+ self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
334
+
335
+ self.stage5 = RSU4F(512,256,512)
336
+ self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
337
+
338
+ self.stage6 = RSU4F(512,256,512)
339
+
340
+ # decoder
341
+ self.stage5d = RSU4F(1024,256,512)
342
+ self.stage4d = RSU4(1024,128,256)
343
+ self.stage3d = RSU5(512,64,128)
344
+ self.stage2d = RSU6(256,32,64)
345
+ self.stage1d = RSU7(128,16,64)
346
+
347
+ self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
348
+ self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
349
+ self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
350
+ self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
351
+ self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
352
+ self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
353
+
354
+ self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
355
+
356
+ def forward(self,x):
357
+
358
+ hx = x
359
+
360
+ #stage 1
361
+ hx1 = self.stage1(hx)
362
+ hx = self.pool12(hx1)
363
+
364
+ #stage 2
365
+ hx2 = self.stage2(hx)
366
+ hx = self.pool23(hx2)
367
+
368
+ #stage 3
369
+ hx3 = self.stage3(hx)
370
+ hx = self.pool34(hx3)
371
+
372
+ #stage 4
373
+ hx4 = self.stage4(hx)
374
+ hx = self.pool45(hx4)
375
+
376
+ #stage 5
377
+ hx5 = self.stage5(hx)
378
+ hx = self.pool56(hx5)
379
+
380
+ #stage 6
381
+ hx6 = self.stage6(hx)
382
+ hx6up = _upsample_like(hx6,hx5)
383
+
384
+ #-------------------- decoder --------------------
385
+ hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
386
+ hx5dup = _upsample_like(hx5d,hx4)
387
+
388
+ hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
389
+ hx4dup = _upsample_like(hx4d,hx3)
390
+
391
+ hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
392
+ hx3dup = _upsample_like(hx3d,hx2)
393
+
394
+ hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
395
+ hx2dup = _upsample_like(hx2d,hx1)
396
+
397
+ hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
398
+
399
+
400
+ #side output
401
+ d1 = self.side1(hx1d)
402
+
403
+ d2 = self.side2(hx2d)
404
+ d2 = _upsample_like(d2,d1)
405
+
406
+ d3 = self.side3(hx3d)
407
+ d3 = _upsample_like(d3,d1)
408
+
409
+ d4 = self.side4(hx4d)
410
+ d4 = _upsample_like(d4,d1)
411
+
412
+ d5 = self.side5(hx5d)
413
+ d5 = _upsample_like(d5,d1)
414
+
415
+ d6 = self.side6(hx6)
416
+ d6 = _upsample_like(d6,d1)
417
+
418
+ d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
419
+
420
+ return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)
421
+
422
+ ### U^2-Net small ###
423
+ class U2NETP(nn.Module):
424
+
425
+ def __init__(self,in_ch=3,out_ch=1):
426
+ super(U2NETP,self).__init__()
427
+
428
+ self.stage1 = RSU7(in_ch,16,64)
429
+ self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
430
+
431
+ self.stage2 = RSU6(64,16,64)
432
+ self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
433
+
434
+ self.stage3 = RSU5(64,16,64)
435
+ self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
436
+
437
+ self.stage4 = RSU4(64,16,64)
438
+ self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
439
+
440
+ self.stage5 = RSU4F(64,16,64)
441
+ self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
442
+
443
+ self.stage6 = RSU4F(64,16,64)
444
+
445
+ # decoder
446
+ self.stage5d = RSU4F(128,16,64)
447
+ self.stage4d = RSU4(128,16,64)
448
+ self.stage3d = RSU5(128,16,64)
449
+ self.stage2d = RSU6(128,16,64)
450
+ self.stage1d = RSU7(128,16,64)
451
+
452
+ self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
453
+ self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
454
+ self.side3 = nn.Conv2d(64,out_ch,3,padding=1)
455
+ self.side4 = nn.Conv2d(64,out_ch,3,padding=1)
456
+ self.side5 = nn.Conv2d(64,out_ch,3,padding=1)
457
+ self.side6 = nn.Conv2d(64,out_ch,3,padding=1)
458
+
459
+ self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
460
+
461
+ def forward(self,x):
462
+
463
+ hx = x
464
+
465
+ #stage 1
466
+ hx1 = self.stage1(hx)
467
+ hx = self.pool12(hx1)
468
+
469
+ #stage 2
470
+ hx2 = self.stage2(hx)
471
+ hx = self.pool23(hx2)
472
+
473
+ #stage 3
474
+ hx3 = self.stage3(hx)
475
+ hx = self.pool34(hx3)
476
+
477
+ #stage 4
478
+ hx4 = self.stage4(hx)
479
+ hx = self.pool45(hx4)
480
+
481
+ #stage 5
482
+ hx5 = self.stage5(hx)
483
+ hx = self.pool56(hx5)
484
+
485
+ #stage 6
486
+ hx6 = self.stage6(hx)
487
+ hx6up = _upsample_like(hx6,hx5)
488
+
489
+ #decoder
490
+ hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
491
+ hx5dup = _upsample_like(hx5d,hx4)
492
+
493
+ hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
494
+ hx4dup = _upsample_like(hx4d,hx3)
495
+
496
+ hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
497
+ hx3dup = _upsample_like(hx3d,hx2)
498
+
499
+ hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
500
+ hx2dup = _upsample_like(hx2d,hx1)
501
+
502
+ hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
503
+
504
+
505
+ #side output
506
+ d1 = self.side1(hx1d)
507
+
508
+ d2 = self.side2(hx2d)
509
+ d2 = _upsample_like(d2,d1)
510
+
511
+ d3 = self.side3(hx3d)
512
+ d3 = _upsample_like(d3,d1)
513
+
514
+ d4 = self.side4(hx4d)
515
+ d4 = _upsample_like(d4,d1)
516
+
517
+ d5 = self.side5(hx5d)
518
+ d5 = _upsample_like(d5,d1)
519
+
520
+ d6 = self.side6(hx6)
521
+ d6 = _upsample_like(d6,d1)
522
+
523
+ d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
524
+
525
+ return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)
u2netp.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7567cde013fb64813973ce6e1ecc25a80c05c3ca7adbc5a54f3c3d90991b854
3
+ size 4683258
yolov8x-worldv2.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41e771bfbbb8894dd857f3fef7cac3b3578dffd49fd3547101efa6a606a02a0e
3
+ size 146355704