Spaces:
Sleeping
Sleeping
File size: 10,565 Bytes
fe8cd4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import gradio as gr
import numpy as np
import cv2
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow.keras.preprocessing import image
from skimage.metrics import structural_similarity as ssim
import os
import tempfile
from PIL import Image
class ImageCharacterClassifier:
def __init__(self, similarity_threshold=0.5):
# Initialize ResNet50 model without top classification layer
self.model = ResNet50(weights='imagenet', include_top=False, pooling='avg')
self.similarity_threshold = similarity_threshold
def load_and_preprocess_image(self, image_path, target_size=(224, 224)):
# Load and preprocess image for ResNet50
img = image.load_img(image_path, target_size=target_size)
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = preprocess_input(img_array)
return img_array
def extract_features(self, image_path):
# Extract deep features using ResNet50
preprocessed_img = self.load_and_preprocess_image(image_path)
features = self.model.predict(preprocessed_img)
return features
def calculate_ssim(self, img1_path, img2_path):
# Calculate SSIM between two images
img1 = cv2.imread(img1_path)
img2 = cv2.imread(img2_path)
if img1 is None or img2 is None:
return 0.0
# Convert to grayscale if images are in color
if len(img1.shape) == 3:
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
if len(img2.shape) == 3:
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# Resize images to same dimensions
img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0]))
score = ssim(img1, img2)
return score
def process_images(reference_image, comparison_images, similarity_threshold):
try:
if reference_image is None:
return "Please upload a reference image.", []
if not comparison_images:
return "Please upload comparison images.", []
# Create temporary directory for saving uploaded files
with tempfile.TemporaryDirectory() as temp_dir:
# Initialize classifier with the threshold
classifier = ImageCharacterClassifier(similarity_threshold=similarity_threshold)
# Save reference image
ref_path = os.path.join(temp_dir, "reference.jpg")
cv2.imwrite(ref_path, cv2.cvtColor(reference_image, cv2.COLOR_RGB2BGR))
results = []
html_output = """
<div style='text-align: center; margin-bottom: 20px;'>
<h2 style='color: #2c3e50;'>Results</h2>
<p style='color: #7f8c8d;'>Reference image compared with uploaded images</p>
</div>
"""
# Extract reference features once
ref_features = classifier.extract_features(ref_path)
# Process each comparison image
for i, comp_image in enumerate(comparison_images):
try:
# Save comparison image
comp_path = os.path.join(temp_dir, f"comparison_{i}.jpg")
try:
# First attempt: Try using PIL
with Image.open(comp_image.name) as img:
img = img.convert('RGB')
img_array = np.array(img)
cv2.imwrite(comp_path, cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
except Exception as e1:
print(f"PIL failed: {str(e1)}")
# Second attempt: Try using OpenCV directly
img = cv2.imread(comp_image.name)
if img is not None:
cv2.imwrite(comp_path, img)
else:
raise ValueError(f"Could not read image: {comp_image.name}")
# Calculate SSIM for structural similarity
ssim_score = classifier.calculate_ssim(ref_path, comp_path)
# Extract features for physical feature comparison
comp_features = classifier.extract_features(comp_path)
# Calculate feature differences
feature_diff = np.abs(ref_features - comp_features)
max_feature_diff = np.max(feature_diff)
# Determine similarity based on max feature difference
is_similar = max_feature_diff > 6.0
if is_similar:
reason = "Physical features match the reference image"
else:
reason = "Physical features don't match the reference image"
# Debug information
print(f"\nDebug for {os.path.basename(comp_image.name)}:")
print(f"SSIM Score: {ssim_score:.3f}")
print(f"Max Feature Difference: {max_feature_diff:.3f}")
# Create HTML output with improved styling and reason
status_color = "#27ae60" if is_similar else "#c0392b" # Green or Red
status_text = "SIMILAR" if is_similar else "NOT SIMILAR"
status_icon = "✓" if is_similar else "✗"
html_output += f"""
<div style='
margin: 15px 0;
padding: 15px;
border-radius: 8px;
background-color: {status_color}1a;
border: 2px solid {status_color};
display: flex;
align-items: center;
justify-content: space-between;
'>
<div style='display: flex; align-items: center;'>
<span style='
font-size: 24px;
margin-right: 10px;
color: {status_color};
'>{status_icon}</span>
<div>
<span style='color: #2c3e50; font-weight: bold; display: block;'>
{os.path.basename(comp_image.name)}
</span>
<span style='color: {status_color}; font-size: 12px;'>
{reason}
</span>
</div>
</div>
<div style='
color: {status_color};
font-weight: bold;
font-size: 16px;
'>{status_text}</div>
</div>
"""
# Read the processed image back for display
display_img = cv2.imread(comp_path)
if display_img is not None:
display_img = cv2.cvtColor(display_img, cv2.COLOR_BGR2RGB)
results.append(display_img)
except Exception as e:
print(f"Error processing {comp_image.name}: {str(e)}")
html_output += f"""
<div style='
margin: 15px 0;
padding: 15px;
border-radius: 8px;
background-color: #e74c3c1a;
border: 2px solid #e74c3c;
'>
<h3 style='color: #e74c3c; margin: 0;'>
Error processing: {os.path.basename(comp_image.name)}
</h3>
<p style='color: #e74c3c; margin: 5px 0 0 0;'>{str(e)}</p>
</div>
"""
return html_output, results
except Exception as e:
print(f"Main error: {str(e)}")
return f"""
<div style='
padding: 15px;
border-radius: 8px;
background-color: #e74c3c1a;
border: 2px solid #e74c3c;
'>
<h3 style='color: #e74c3c; margin: 0;'>Error</h3>
<p style='color: #e74c3c; margin: 5px 0 0 0;'>{str(e)}</p>
</div>
""", []
# Update the interface creation
def create_interface():
with gr.Blocks() as interface:
gr.Markdown("# Image Similarity Classifier")
gr.Markdown("Upload a reference image and up to 10 comparison images to check similarity.")
with gr.Row():
with gr.Column():
reference_input = gr.Image(
label="Reference Image",
type="numpy",
image_mode="RGB"
)
comparison_input = gr.File(
label="Comparison Images (Upload up to 10)",
file_count="multiple",
file_types=["image"],
maximum=10
)
threshold_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.05,
label="Similarity Threshold"
)
submit_button = gr.Button("Compare Images", variant="primary")
with gr.Column():
output_html = gr.HTML(label="Results")
output_gallery = gr.Gallery(
label="Processed Images",
columns=5,
show_label=True,
height="auto"
)
submit_button.click(
fn=process_images,
inputs=[reference_input, comparison_input, threshold_slider],
outputs=[output_html, output_gallery]
)
return interface
# Launch the app
if __name__ == "__main__":
interface = create_interface()
interface.launch(share=True) |