File size: 10,565 Bytes
fe8cd4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import gradio as gr
import numpy as np
import cv2
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow.keras.preprocessing import image
from skimage.metrics import structural_similarity as ssim
import os
import tempfile
from PIL import Image

class ImageCharacterClassifier:
    def __init__(self, similarity_threshold=0.5):
        # Initialize ResNet50 model without top classification layer
        self.model = ResNet50(weights='imagenet', include_top=False, pooling='avg')
        self.similarity_threshold = similarity_threshold

    def load_and_preprocess_image(self, image_path, target_size=(224, 224)):
        # Load and preprocess image for ResNet50
        img = image.load_img(image_path, target_size=target_size)
        img_array = image.img_to_array(img)
        img_array = np.expand_dims(img_array, axis=0)
        img_array = preprocess_input(img_array)
        return img_array

    def extract_features(self, image_path):
        # Extract deep features using ResNet50
        preprocessed_img = self.load_and_preprocess_image(image_path)
        features = self.model.predict(preprocessed_img)
        return features

    def calculate_ssim(self, img1_path, img2_path):
        # Calculate SSIM between two images
        img1 = cv2.imread(img1_path)
        img2 = cv2.imread(img2_path)
        
        if img1 is None or img2 is None:
            return 0.0
        
        # Convert to grayscale if images are in color
        if len(img1.shape) == 3:
            img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
        if len(img2.shape) == 3:
            img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
        
        # Resize images to same dimensions
        img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0]))
        
        score = ssim(img1, img2)
        return score

def process_images(reference_image, comparison_images, similarity_threshold):
    try:
        if reference_image is None:
            return "Please upload a reference image.", []
        
        if not comparison_images:
            return "Please upload comparison images.", []
            
        # Create temporary directory for saving uploaded files
        with tempfile.TemporaryDirectory() as temp_dir:
            # Initialize classifier with the threshold
            classifier = ImageCharacterClassifier(similarity_threshold=similarity_threshold)
            
            # Save reference image
            ref_path = os.path.join(temp_dir, "reference.jpg")
            cv2.imwrite(ref_path, cv2.cvtColor(reference_image, cv2.COLOR_RGB2BGR))
            
            results = []
            html_output = """
            <div style='text-align: center; margin-bottom: 20px;'>
                <h2 style='color: #2c3e50;'>Results</h2>
                <p style='color: #7f8c8d;'>Reference image compared with uploaded images</p>
            </div>
            """
            
            # Extract reference features once
            ref_features = classifier.extract_features(ref_path)
            
            # Process each comparison image
            for i, comp_image in enumerate(comparison_images):
                try:
                    # Save comparison image
                    comp_path = os.path.join(temp_dir, f"comparison_{i}.jpg")
                    
                    try:
                        # First attempt: Try using PIL
                        with Image.open(comp_image.name) as img:
                            img = img.convert('RGB')
                            img_array = np.array(img)
                            cv2.imwrite(comp_path, cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
                    except Exception as e1:
                        print(f"PIL failed: {str(e1)}")
                        # Second attempt: Try using OpenCV directly
                        img = cv2.imread(comp_image.name)
                        if img is not None:
                            cv2.imwrite(comp_path, img)
                        else:
                            raise ValueError(f"Could not read image: {comp_image.name}")
                    
                    # Calculate SSIM for structural similarity
                    ssim_score = classifier.calculate_ssim(ref_path, comp_path)
                    
                    # Extract features for physical feature comparison
                    comp_features = classifier.extract_features(comp_path)
                    
                    # Calculate feature differences
                    feature_diff = np.abs(ref_features - comp_features)
                    max_feature_diff = np.max(feature_diff)
                    
                    # Determine similarity based on max feature difference
                    is_similar = max_feature_diff > 6.0
                    
                    if is_similar:
                        reason = "Physical features match the reference image"
                    else:
                        reason = "Physical features don't match the reference image"
                    
                    # Debug information
                    print(f"\nDebug for {os.path.basename(comp_image.name)}:")
                    print(f"SSIM Score: {ssim_score:.3f}")
                    print(f"Max Feature Difference: {max_feature_diff:.3f}")
                    
                    # Create HTML output with improved styling and reason
                    status_color = "#27ae60" if is_similar else "#c0392b"  # Green or Red
                    status_text = "SIMILAR" if is_similar else "NOT SIMILAR"
                    status_icon = "✓" if is_similar else "✗"
                    
                    html_output += f"""
                    <div style='
                        margin: 15px 0;
                        padding: 15px;
                        border-radius: 8px;
                        background-color: {status_color}1a;
                        border: 2px solid {status_color};
                        display: flex;
                        align-items: center;
                        justify-content: space-between;
                    '>
                        <div style='display: flex; align-items: center;'>
                            <span style='
                                font-size: 24px;
                                margin-right: 10px;
                                color: {status_color};
                            '>{status_icon}</span>
                            <div>
                                <span style='color: #2c3e50; font-weight: bold; display: block;'>
                                    {os.path.basename(comp_image.name)}
                                </span>
                                <span style='color: {status_color}; font-size: 12px;'>
                                    {reason}
                                </span>
                            </div>
                        </div>
                        <div style='
                            color: {status_color};
                            font-weight: bold;
                            font-size: 16px;
                        '>{status_text}</div>
                    </div>
                    """
                    
                    # Read the processed image back for display
                    display_img = cv2.imread(comp_path)
                    if display_img is not None:
                        display_img = cv2.cvtColor(display_img, cv2.COLOR_BGR2RGB)
                        results.append(display_img)
                    
                except Exception as e:
                    print(f"Error processing {comp_image.name}: {str(e)}")
                    html_output += f"""
                    <div style='
                        margin: 15px 0;
                        padding: 15px;
                        border-radius: 8px;
                        background-color: #e74c3c1a;
                        border: 2px solid #e74c3c;
                    '>
                        <h3 style='color: #e74c3c; margin: 0;'>
                            Error processing: {os.path.basename(comp_image.name)}
                        </h3>
                        <p style='color: #e74c3c; margin: 5px 0 0 0;'>{str(e)}</p>
                    </div>
                    """
            
            return html_output, results
            
    except Exception as e:
        print(f"Main error: {str(e)}")
        return f"""
        <div style='
            padding: 15px;
            border-radius: 8px;
            background-color: #e74c3c1a;
            border: 2px solid #e74c3c;
        '>
            <h3 style='color: #e74c3c; margin: 0;'>Error</h3>
            <p style='color: #e74c3c; margin: 5px 0 0 0;'>{str(e)}</p>
        </div>
        """, []

# Update the interface creation
def create_interface():
    with gr.Blocks() as interface:
        gr.Markdown("# Image Similarity Classifier")
        gr.Markdown("Upload a reference image and up to 10 comparison images to check similarity.")
        
        with gr.Row():
            with gr.Column():
                reference_input = gr.Image(
                    label="Reference Image",
                    type="numpy",
                    image_mode="RGB"
                )
                comparison_input = gr.File(
                    label="Comparison Images (Upload up to 10)", 
                    file_count="multiple",
                    file_types=["image"],
                    maximum=10
                )
                threshold_slider = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.5,
                    step=0.05,
                    label="Similarity Threshold"
                )
                submit_button = gr.Button("Compare Images", variant="primary")
            
            with gr.Column():
                output_html = gr.HTML(label="Results")
                output_gallery = gr.Gallery(
                    label="Processed Images",
                    columns=5,
                    show_label=True,
                    height="auto"
                )
        
        submit_button.click(
            fn=process_images,
            inputs=[reference_input, comparison_input, threshold_slider],
            outputs=[output_html, output_gallery]
        )
    
    return interface

# Launch the app
if __name__ == "__main__":
    interface = create_interface()
    interface.launch(share=True)