fatima02 commited on
Commit
0414ba1
·
verified ·
1 Parent(s): 7c0f80b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -206
app.py CHANGED
@@ -1,251 +1,114 @@
1
  import os
2
- os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
3
- os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
4
-
5
-
6
- import gradio as gr
7
  import numpy as np
8
  import cv2
 
9
  from tensorflow.keras.applications import ResNet50
10
  from tensorflow.keras.applications.resnet50 import preprocess_input
11
  from tensorflow.keras.preprocessing import image
12
  from skimage.metrics import structural_similarity as ssim
13
- import os
14
- import tempfile
15
  from PIL import Image
16
 
 
 
 
 
17
  class ImageCharacterClassifier:
18
  def __init__(self, similarity_threshold=0.5):
19
- # Initialize ResNet50 model without top classification layer
20
  self.model = ResNet50(weights='imagenet', include_top=False, pooling='avg')
21
  self.similarity_threshold = similarity_threshold
22
 
23
- def load_and_preprocess_image(self, image_path, target_size=(224, 224)):
24
- # Load and preprocess image for ResNet50
25
- img = image.load_img(image_path, target_size=target_size)
26
- img_array = image.img_to_array(img)
 
27
  img_array = np.expand_dims(img_array, axis=0)
28
  img_array = preprocess_input(img_array)
29
  return img_array
30
 
31
- def extract_features(self, image_path):
32
- # Extract deep features using ResNet50
33
- preprocessed_img = self.load_and_preprocess_image(image_path)
34
  features = self.model.predict(preprocessed_img)
35
  return features
36
 
37
- def calculate_ssim(self, img1_path, img2_path):
38
- # Calculate SSIM between two images
39
- img1 = cv2.imread(img1_path)
40
- img2 = cv2.imread(img2_path)
41
-
42
- if img1 is None or img2 is None:
43
- return 0.0
44
-
45
- # Convert to grayscale if images are in color
46
- if len(img1.shape) == 3:
47
- img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
48
- if len(img2.shape) == 3:
49
- img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
50
-
51
- # Resize images to same dimensions
52
- img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0]))
53
-
54
- score = ssim(img1, img2)
55
- return score
56
 
57
  def process_images(reference_image, comparison_images, similarity_threshold):
58
  try:
59
  if reference_image is None:
60
  return "Please upload a reference image.", []
61
-
62
  if not comparison_images:
63
  return "Please upload comparison images.", []
64
-
65
- # Create temporary directory for saving uploaded files
66
- with tempfile.TemporaryDirectory() as temp_dir:
67
- # Initialize classifier with the threshold
68
- classifier = ImageCharacterClassifier(similarity_threshold=similarity_threshold)
69
-
70
- # Save reference image
71
- ref_path = os.path.join(temp_dir, "reference.jpg")
72
- cv2.imwrite(ref_path, cv2.cvtColor(reference_image, cv2.COLOR_RGB2BGR))
73
-
74
- results = []
75
- html_output = """
76
- <div style='text-align: center; margin-bottom: 20px;'>
77
- <h2 style='color: #2c3e50;'>Results</h2>
78
- <p style='color: #7f8c8d;'>Reference image compared with uploaded images</p>
79
- </div>
80
- """
81
-
82
- # Extract reference features once
83
- ref_features = classifier.extract_features(ref_path)
84
-
85
- # Process each comparison image
86
- for i, comp_image in enumerate(comparison_images):
87
- try:
88
- # Save comparison image
89
- comp_path = os.path.join(temp_dir, f"comparison_{i}.jpg")
90
-
91
- try:
92
- # First attempt: Try using PIL
93
- with Image.open(comp_image.name) as img:
94
- img = img.convert('RGB')
95
- img_array = np.array(img)
96
- cv2.imwrite(comp_path, cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
97
- except Exception as e1:
98
- print(f"PIL failed: {str(e1)}")
99
- # Second attempt: Try using OpenCV directly
100
- img = cv2.imread(comp_image.name)
101
- if img is not None:
102
- cv2.imwrite(comp_path, img)
103
- else:
104
- raise ValueError(f"Could not read image: {comp_image.name}")
105
-
106
- # Calculate SSIM for structural similarity
107
- ssim_score = classifier.calculate_ssim(ref_path, comp_path)
108
-
109
- # Extract features for physical feature comparison
110
- comp_features = classifier.extract_features(comp_path)
111
-
112
- # Calculate feature differences
113
- feature_diff = np.abs(ref_features - comp_features)
114
- max_feature_diff = np.max(feature_diff)
115
-
116
- # Determine similarity based on max feature difference
117
- is_similar = max_feature_diff > 6.0
118
-
119
- if is_similar:
120
- reason = "Physical features match the reference image"
121
- else:
122
- reason = "Physical features don't match the reference image"
123
-
124
- # Debug information
125
- print(f"\nDebug for {os.path.basename(comp_image.name)}:")
126
- print(f"SSIM Score: {ssim_score:.3f}")
127
- print(f"Max Feature Difference: {max_feature_diff:.3f}")
128
-
129
- # Create HTML output with improved styling and reason
130
- status_color = "#27ae60" if is_similar else "#c0392b" # Green or Red
131
- status_text = "SIMILAR" if is_similar else "NOT SIMILAR"
132
- status_icon = "✓" if is_similar else "✗"
133
-
134
- html_output += f"""
135
- <div style='
136
- margin: 15px 0;
137
- padding: 15px;
138
- border-radius: 8px;
139
- background-color: {status_color}1a;
140
- border: 2px solid {status_color};
141
- display: flex;
142
- align-items: center;
143
- justify-content: space-between;
144
- '>
145
- <div style='display: flex; align-items: center;'>
146
- <span style='
147
- font-size: 24px;
148
- margin-right: 10px;
149
- color: {status_color};
150
- '>{status_icon}</span>
151
- <div>
152
- <span style='color: #2c3e50; font-weight: bold; display: block;'>
153
- {os.path.basename(comp_image.name)}
154
- </span>
155
- <span style='color: {status_color}; font-size: 12px;'>
156
- {reason}
157
- </span>
158
- </div>
159
- </div>
160
- <div style='
161
- color: {status_color};
162
- font-weight: bold;
163
- font-size: 16px;
164
- '>{status_text}</div>
165
- </div>
166
- """
167
-
168
- # Read the processed image back for display
169
- display_img = cv2.imread(comp_path)
170
- if display_img is not None:
171
- display_img = cv2.cvtColor(display_img, cv2.COLOR_BGR2RGB)
172
- results.append(display_img)
173
-
174
- except Exception as e:
175
- print(f"Error processing {comp_image.name}: {str(e)}")
176
- html_output += f"""
177
- <div style='
178
- margin: 15px 0;
179
- padding: 15px;
180
- border-radius: 8px;
181
- background-color: #e74c3c1a;
182
- border: 2px solid #e74c3c;
183
- '>
184
- <h3 style='color: #e74c3c; margin: 0;'>
185
- Error processing: {os.path.basename(comp_image.name)}
186
- </h3>
187
- <p style='color: #e74c3c; margin: 5px 0 0 0;'>{str(e)}</p>
188
- </div>
189
- """
190
-
191
- return html_output, results
192
-
193
  except Exception as e:
194
- print(f"Main error: {str(e)}")
195
- return f"""
196
- <div style='
197
- padding: 15px;
198
- border-radius: 8px;
199
- background-color: #e74c3c1a;
200
- border: 2px solid #e74c3c;
201
- '>
202
- <h3 style='color: #e74c3c; margin: 0;'>Error</h3>
203
- <p style='color: #e74c3c; margin: 5px 0 0 0;'>{str(e)}</p>
204
- </div>
205
- """, []
206
-
207
- # Update the interface creation
208
  def create_interface():
209
  with gr.Blocks() as interface:
210
  gr.Markdown("# Image Similarity Classifier")
211
- gr.Markdown("Upload a reference image and up to 10 comparison images to check similarity.")
212
-
213
  with gr.Row():
214
  with gr.Column():
215
- reference_input = gr.Image(
216
- label="Reference Image",
217
- type="numpy",
218
- image_mode="RGB"
219
- )
220
- comparison_input = gr.File(type="filepath", interactive=True)
221
-
222
- threshold_slider = gr.Slider(
223
- minimum=0.0,
224
- maximum=1.0,
225
- value=0.5,
226
- step=0.05,
227
- label="Similarity Threshold"
228
- )
229
- submit_button = gr.Button("Compare Images", variant="primary")
230
-
231
  with gr.Column():
232
  output_html = gr.HTML(label="Results")
233
- output_gallery = gr.Gallery(
234
- label="Processed Images",
235
- columns=5,
236
- show_label=True,
237
- height="auto"
238
- )
239
-
240
  submit_button.click(
241
  fn=process_images,
242
  inputs=[reference_input, comparison_input, threshold_slider],
243
  outputs=[output_html, output_gallery]
244
  )
245
-
246
  return interface
247
 
248
- # Launch the app
249
  if __name__ == "__main__":
250
  interface = create_interface()
251
- interface.launch(share=True)
 
1
  import os
2
+ import tempfile
 
 
 
 
3
  import numpy as np
4
  import cv2
5
+ import gradio as gr
6
  from tensorflow.keras.applications import ResNet50
7
  from tensorflow.keras.applications.resnet50 import preprocess_input
8
  from tensorflow.keras.preprocessing import image
9
  from skimage.metrics import structural_similarity as ssim
 
 
10
  from PIL import Image
11
 
12
+ # Disable GPU for TensorFlow
13
+ os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
14
+ os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
15
+
16
  class ImageCharacterClassifier:
17
  def __init__(self, similarity_threshold=0.5):
 
18
  self.model = ResNet50(weights='imagenet', include_top=False, pooling='avg')
19
  self.similarity_threshold = similarity_threshold
20
 
21
+ def load_and_preprocess_image(self, img):
22
+ # Convert image to array and preprocess it
23
+ img = img.convert('RGB')
24
+ img_array = np.array(img)
25
+ img_array = cv2.resize(img_array, (224, 224)) # Ensure correct size
26
  img_array = np.expand_dims(img_array, axis=0)
27
  img_array = preprocess_input(img_array)
28
  return img_array
29
 
30
+ def extract_features(self, img):
31
+ preprocessed_img = self.load_and_preprocess_image(img)
 
32
  features = self.model.predict(preprocessed_img)
33
  return features
34
 
35
+ def calculate_ssim(self, img1, img2):
36
+ img1_gray = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
37
+ img2_gray = cv2.cvtColor(img2, cv2.COLOR_RGB2GRAY)
38
+ img2_gray = cv2.resize(img2_gray, (img1_gray.shape[1], img1_gray.shape[0]))
39
+ return ssim(img1_gray, img2_gray)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  def process_images(reference_image, comparison_images, similarity_threshold):
42
  try:
43
  if reference_image is None:
44
  return "Please upload a reference image.", []
 
45
  if not comparison_images:
46
  return "Please upload comparison images.", []
47
+
48
+ classifier = ImageCharacterClassifier(similarity_threshold)
49
+
50
+ # Convert reference image to NumPy array
51
+ ref_image = Image.fromarray(reference_image)
52
+ ref_features = classifier.extract_features(ref_image)
53
+
54
+ results = []
55
+ html_output = "<h3>Comparison Results:</h3>"
56
+
57
+ for comp_image in comparison_images:
58
+ try:
59
+ # Read image file as PIL Image
60
+ comp_pil = Image.open(comp_image)
61
+ comp_pil = comp_pil.convert("RGB")
62
+
63
+ # Convert to NumPy format for SSIM
64
+ comp_array = np.array(comp_pil)
65
+
66
+ # Calculate SSIM score
67
+ ssim_score = classifier.calculate_ssim(reference_image, comp_array)
68
+
69
+ # Extract features
70
+ comp_features = classifier.extract_features(comp_pil)
71
+ max_feature_diff = np.max(np.abs(ref_features - comp_features))
72
+ is_similar = max_feature_diff < 6.0
73
+
74
+ status_text = "SIMILAR" if is_similar else "NOT SIMILAR"
75
+ status_color = "green" if is_similar else "red"
76
+
77
+ html_output += f"<p style='color:{status_color};'>{comp_image.name}: {status_text}</p>"
78
+ results.append(comp_array)
79
+
80
+ except Exception as e:
81
+ html_output += f"<p style='color:red;'>Error processing {comp_image.name}: {str(e)}</p>"
82
+
83
+ return html_output, results
84
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  except Exception as e:
86
+ return f"<p style='color:red;'>Error: {str(e)}</p>", []
87
+
 
 
 
 
 
 
 
 
 
 
 
 
88
  def create_interface():
89
  with gr.Blocks() as interface:
90
  gr.Markdown("# Image Similarity Classifier")
91
+ gr.Markdown("Upload a reference image and multiple comparison images.")
92
+
93
  with gr.Row():
94
  with gr.Column():
95
+ reference_input = gr.Image(label="Reference Image", type="numpy")
96
+ comparison_input = gr.File(label="Comparison Images", type="file", multiple=True)
97
+ threshold_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Similarity Threshold")
98
+ submit_button = gr.Button("Compare Images")
99
+
 
 
 
 
 
 
 
 
 
 
 
100
  with gr.Column():
101
  output_html = gr.HTML(label="Results")
102
+ output_gallery = gr.Gallery(label="Processed Images", columns=3)
103
+
 
 
 
 
 
104
  submit_button.click(
105
  fn=process_images,
106
  inputs=[reference_input, comparison_input, threshold_slider],
107
  outputs=[output_html, output_gallery]
108
  )
109
+
110
  return interface
111
 
 
112
  if __name__ == "__main__":
113
  interface = create_interface()
114
+ interface.launch(share=True)