fatima02 commited on
Commit
09a6246
·
verified ·
1 Parent(s): 953aaaf

Delete image_classifier.py

Browse files
Files changed (1) hide show
  1. image_classifier.py +0 -139
image_classifier.py DELETED
@@ -1,139 +0,0 @@
1
- import numpy as np
2
- import cv2
3
- from tensorflow.keras.applications import ResNet50
4
- from tensorflow.keras.applications.resnet50 import preprocess_input
5
- from tensorflow.keras.preprocessing import image
6
- from skimage.metrics import structural_similarity as ssim
7
- import os
8
- import argparse
9
-
10
- class ImageCharacterClassifier:
11
- def __init__(self, similarity_threshold=0.7):
12
- # Initialize ResNet50 model without top classification layer
13
- self.model = ResNet50(weights='imagenet', include_top=False, pooling='avg')
14
- self.similarity_threshold = similarity_threshold
15
-
16
- def load_and_preprocess_image(self, image_path, target_size=(224, 224)):
17
- # Load and preprocess image for ResNet50
18
- img = image.load_img(image_path, target_size=target_size)
19
- img_array = image.img_to_array(img)
20
- img_array = np.expand_dims(img_array, axis=0)
21
- img_array = preprocess_input(img_array)
22
- return img_array
23
-
24
- def extract_features(self, image_path):
25
- # Extract deep features using ResNet50
26
- preprocessed_img = self.load_and_preprocess_image(image_path)
27
- features = self.model.predict(preprocessed_img)
28
- return features
29
-
30
- def calculate_ssim(self, img1_path, img2_path):
31
- # Calculate SSIM between two images
32
- img1 = cv2.imread(img1_path)
33
- img2 = cv2.imread(img2_path)
34
-
35
- # Convert to grayscale if images are in color
36
- if len(img1.shape) == 3:
37
- img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
38
- if len(img2.shape) == 3:
39
- img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
40
-
41
- # Resize images to same dimensions
42
- img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0]))
43
-
44
- score = ssim(img1, img2)
45
- return score
46
-
47
- def classify_images(self, reference_image_path, image_folder_path):
48
- # Extract features from reference image
49
- reference_features = self.extract_features(reference_image_path)
50
-
51
- results = []
52
-
53
- # Process each image in the folder
54
- for image_name in os.listdir(image_folder_path):
55
- if image_name.lower().endswith(('.png', '.jpg', '.jpeg')):
56
- image_path = os.path.join(image_folder_path, image_name)
57
-
58
- try:
59
- # Calculate SSIM
60
- ssim_score = self.calculate_ssim(reference_image_path, image_path)
61
-
62
- # Extract features and calculate similarity
63
- image_features = self.extract_features(image_path)
64
-
65
- # Calculate cosine similarity
66
- feature_similarity = np.dot(reference_features.flatten(),
67
- image_features.flatten()) / (
68
- np.linalg.norm(reference_features) * np.linalg.norm(image_features))
69
-
70
- # Give more weight to feature similarity
71
- combined_similarity = (0.3 * ssim_score + 0.7 * feature_similarity)
72
-
73
- # Classify based on similarity threshold
74
- is_similar = combined_similarity >= self.similarity_threshold
75
-
76
- results.append({
77
- 'image_name': image_name,
78
- 'ssim_score': ssim_score,
79
- 'feature_similarity': feature_similarity,
80
- 'combined_similarity': combined_similarity,
81
- 'is_similar': is_similar
82
- })
83
-
84
- except Exception as e:
85
- print(f"Error processing {image_name}: {str(e)}")
86
- continue
87
-
88
- return results
89
-
90
- def main():
91
- # Create argument parser
92
- parser = argparse.ArgumentParser(description='Image Character Classification')
93
- parser.add_argument('--reference', '-r',
94
- type=str,
95
- required=True,
96
- help='Path to reference image')
97
- parser.add_argument('--folder', '-f',
98
- type=str,
99
- required=True,
100
- help='Path to folder containing images to compare')
101
- parser.add_argument('--threshold', '-t',
102
- type=float,
103
- default=0.5, # Lowered the default threshold
104
- help='Similarity threshold (default: 0.5)')
105
-
106
- # Parse arguments
107
- args = parser.parse_args()
108
-
109
- # Initialize classifier
110
- classifier = ImageCharacterClassifier(similarity_threshold=args.threshold)
111
-
112
- # Check if paths exist
113
- if not os.path.exists(args.reference):
114
- print(f"Error: Reference image not found at {args.reference}")
115
- return
116
-
117
- if not os.path.exists(args.folder):
118
- print(f"Error: Image folder not found at {args.folder}")
119
- return
120
-
121
- # Perform classification
122
- results = classifier.classify_images(args.reference, args.folder)
123
-
124
- # Sort results by similarity score
125
- results.sort(key=lambda x: x['combined_similarity'], reverse=True)
126
-
127
- # Print results
128
- print("\nResults sorted by similarity (highest to lowest):")
129
- print("-" * 50)
130
- for result in results:
131
- print(f"\nImage: {result['image_name']}")
132
- print(f"SSIM Score: {result['ssim_score']:.3f}")
133
- print(f"Feature Similarity: {result['feature_similarity']:.3f}")
134
- print(f"Combined Similarity: {result['combined_similarity']:.3f}")
135
- print(f"Is Similar: {result['is_similar']}")
136
- print("-" * 30)
137
-
138
- if __name__ == "__main__":
139
- main()