import numpy as np import cv2 from tensorflow.keras.applications import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input from tensorflow.keras.preprocessing import image from skimage.metrics import structural_similarity as ssim import os import argparse class ImageCharacterClassifier: def __init__(self, similarity_threshold=0.7): # Initialize ResNet50 model without top classification layer self.model = ResNet50(weights='imagenet', include_top=False, pooling='avg') self.similarity_threshold = similarity_threshold def load_and_preprocess_image(self, image_path, target_size=(224, 224)): # Load and preprocess image for ResNet50 img = image.load_img(image_path, target_size=target_size) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) img_array = preprocess_input(img_array) return img_array def extract_features(self, image_path): # Extract deep features using ResNet50 preprocessed_img = self.load_and_preprocess_image(image_path) features = self.model.predict(preprocessed_img) return features def calculate_ssim(self, img1_path, img2_path): # Calculate SSIM between two images img1 = cv2.imread(img1_path) img2 = cv2.imread(img2_path) # Convert to grayscale if images are in color if len(img1.shape) == 3: img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) if len(img2.shape) == 3: img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # Resize images to same dimensions img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0])) score = ssim(img1, img2) return score def classify_images(self, reference_image_path, image_folder_path): # Extract features from reference image reference_features = self.extract_features(reference_image_path) results = [] # Process each image in the folder for image_name in os.listdir(image_folder_path): if image_name.lower().endswith(('.png', '.jpg', '.jpeg')): image_path = os.path.join(image_folder_path, image_name) try: # Calculate SSIM ssim_score = self.calculate_ssim(reference_image_path, image_path) # Extract features and calculate similarity image_features = self.extract_features(image_path) # Calculate cosine similarity feature_similarity = np.dot(reference_features.flatten(), image_features.flatten()) / ( np.linalg.norm(reference_features) * np.linalg.norm(image_features)) # Give more weight to feature similarity combined_similarity = (0.3 * ssim_score + 0.7 * feature_similarity) # Classify based on similarity threshold is_similar = combined_similarity >= self.similarity_threshold results.append({ 'image_name': image_name, 'ssim_score': ssim_score, 'feature_similarity': feature_similarity, 'combined_similarity': combined_similarity, 'is_similar': is_similar }) except Exception as e: print(f"Error processing {image_name}: {str(e)}") continue return results def main(): # Create argument parser parser = argparse.ArgumentParser(description='Image Character Classification') parser.add_argument('--reference', '-r', type=str, required=True, help='Path to reference image') parser.add_argument('--folder', '-f', type=str, required=True, help='Path to folder containing images to compare') parser.add_argument('--threshold', '-t', type=float, default=0.5, # Lowered the default threshold help='Similarity threshold (default: 0.5)') # Parse arguments args = parser.parse_args() # Initialize classifier classifier = ImageCharacterClassifier(similarity_threshold=args.threshold) # Check if paths exist if not os.path.exists(args.reference): print(f"Error: Reference image not found at {args.reference}") return if not os.path.exists(args.folder): print(f"Error: Image folder not found at {args.folder}") return # Perform classification results = classifier.classify_images(args.reference, args.folder) # Sort results by similarity score results.sort(key=lambda x: x['combined_similarity'], reverse=True) # Print results print("\nResults sorted by similarity (highest to lowest):") print("-" * 50) for result in results: print(f"\nImage: {result['image_name']}") print(f"SSIM Score: {result['ssim_score']:.3f}") print(f"Feature Similarity: {result['feature_similarity']:.3f}") print(f"Combined Similarity: {result['combined_similarity']:.3f}") print(f"Is Similar: {result['is_similar']}") print("-" * 30) if __name__ == "__main__": main()