Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,153 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
-
from
|
|
|
5 |
from PIL import Image
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# Function to
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
with gr.Blocks() as interface:
|
23 |
-
gr.Markdown("<h1 style='color: #2196F3; text-align: center;'>Image Stitcher 🧵</h1>")
|
24 |
-
gr.Markdown("<h3 style='color: #2196F3; text-align: center;'>=== Upload the images you want to stitch ===</h3>")
|
25 |
-
|
26 |
-
image_upload = gr.Files(type="filepath", label="Upload Images")
|
27 |
-
stitch_button = gr.Button("Stitch", variant="primary")
|
28 |
-
stitched_image = gr.Image(type="pil", label="Stitched Image")
|
29 |
-
download_button = gr.File(label="Download Stitched Image")
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# Launch the interface
|
35 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
+
from typing import Union, List
|
5 |
+
from pathlib import Path
|
6 |
from PIL import Image
|
7 |
+
import torch
|
8 |
+
from ultralytics.utils.plotting import save_one_box
|
9 |
+
from ultralytics.engine.results import Results
|
10 |
+
from ultralytics import YOLOWorld
|
11 |
|
12 |
+
# Function to resize images
|
13 |
+
|
14 |
+
def resize_images(images, scale_percent=50):
|
15 |
+
resized_images = []
|
16 |
+
for img in images:
|
17 |
+
width = int(img.shape[1] * scale_percent / 100)
|
18 |
+
height = int(img.shape[0] * scale_percent / 100)
|
19 |
+
dim = (width, height)
|
20 |
+
resized = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)
|
21 |
+
resized_images.append(resized)
|
22 |
+
return resized_images
|
23 |
+
|
24 |
+
# Function to stitch images
|
25 |
+
|
26 |
+
def stitch_images(image_paths, scale_percent=50):
|
27 |
+
images = [cv2.imread(path) for path in image_paths]
|
28 |
+
resized_images = resize_images(images, scale_percent)
|
29 |
+
stitcher = cv2.Stitcher_create()
|
30 |
+
status, stitched_image = stitcher.stitch(resized_images)
|
31 |
+
|
32 |
+
if status == cv2.Stitcher_OK:
|
33 |
+
print("Stitching successful!")
|
34 |
+
return stitched_image
|
35 |
+
else:
|
36 |
+
print(f"Stitching failed with status code: {status}")
|
37 |
+
return None
|
38 |
+
|
39 |
+
# YOLO detection function
|
40 |
+
|
41 |
+
def yolo_detect(
|
42 |
+
image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor],
|
43 |
+
classes: List[str],
|
44 |
+
) -> np.ndarray:
|
45 |
+
detector = YOLOWorld("yolov8x-worldv2.pt")
|
46 |
+
detector.set_classes(classes)
|
47 |
+
results: List[Results] = detector.predict(image)
|
48 |
+
|
49 |
+
boxes = []
|
50 |
+
for result in results:
|
51 |
+
boxes.append(
|
52 |
+
save_one_box(result.cpu().boxes.xyxy, im=result.orig_img, save=False)
|
53 |
+
)
|
54 |
+
|
55 |
+
del detector
|
56 |
+
return boxes[0]
|
57 |
+
|
58 |
+
# Function to predict and process image
|
59 |
+
|
60 |
+
def predict(image, offset_inches):
|
61 |
+
try:
|
62 |
+
drawer_img = yolo_detect(image, ["box"])
|
63 |
+
shrunked_img = make_square(shrink_bbox(drawer_img, 0.8))
|
64 |
+
return shrunked_img
|
65 |
+
except:
|
66 |
+
raise Exception("Unable to DETECT DRAWER, please take another picture with different magnification level!")
|
67 |
+
|
68 |
+
# Function to shrink bounding box
|
69 |
+
|
70 |
+
def shrink_bbox(image: np.ndarray, shrink_factor: float):
|
71 |
+
height, width = image.shape[:2]
|
72 |
+
center_x, center_y = width // 2, height // 2
|
73 |
+
|
74 |
+
new_width = int(width * shrink_factor)
|
75 |
+
new_height = int(height * shrink_factor)
|
76 |
+
|
77 |
+
x1 = max(center_x - new_width // 2, 0)
|
78 |
+
y1 = max(center_y - new_height // 2, 0)
|
79 |
+
x2 = min(center_x + new_width // 2, width)
|
80 |
+
y2 = min(center_y + new_height // 2, height)
|
81 |
+
|
82 |
+
cropped_image = image[y1:y2, x1:x2]
|
83 |
+
return cropped_image
|
84 |
+
|
85 |
+
# Function to make image square
|
86 |
+
|
87 |
+
def make_square(img: np.ndarray):
|
88 |
+
height, width = img.shape[:2]
|
89 |
+
max_dim = max(height, width)
|
90 |
+
pad_height = (max_dim - height) // 2
|
91 |
+
pad_width = (max_dim - width) // 2
|
92 |
+
pad_height_extra = max_dim - height - 2 * pad_height
|
93 |
+
pad_width_extra = max_dim - width - 2 * pad_width
|
94 |
+
|
95 |
+
if len(img.shape) == 3:
|
96 |
+
padded = np.pad(
|
97 |
+
img,
|
98 |
+
((pad_height, pad_height + pad_height_extra),
|
99 |
+
(pad_width, pad_width + pad_width_extra),
|
100 |
+
(0, 0)),
|
101 |
+
mode="edge"
|
102 |
+
)
|
103 |
+
else:
|
104 |
+
padded = np.pad(
|
105 |
+
img,
|
106 |
+
((pad_height, pad_height + pad_height_extra),
|
107 |
+
(pad_width, pad_width + pad_width_extra)),
|
108 |
+
mode="edge"
|
109 |
+
)
|
110 |
+
|
111 |
+
return padded
|
112 |
+
|
113 |
+
# Main image processing function
|
114 |
+
|
115 |
+
def process_image(image_paths, scale_percent=50, offset_inches=1):
|
116 |
+
stitched_image = stitch_images(image_paths, scale_percent)
|
117 |
+
|
118 |
+
if stitched_image is not None:
|
119 |
+
try:
|
120 |
+
stitched_image_rgb = cv2.cvtColor(stitched_image, cv2.COLOR_BGR2RGB)
|
121 |
+
final_image = predict(stitched_image_rgb, offset_inches)
|
122 |
+
return final_image
|
123 |
+
except Exception as e:
|
124 |
+
print(str(e))
|
125 |
+
return stitched_image
|
126 |
+
|
127 |
+
# Gradio interface function
|
128 |
+
|
129 |
+
def gradio_stitch_and_detect(image_files):
|
130 |
+
image_paths = [file.name for file in image_files]
|
131 |
+
result_image = process_image(image_paths, scale_percent=50)
|
132 |
+
|
133 |
+
if result_image is not None:
|
134 |
+
result_image_rgb = cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB)
|
135 |
+
pil_image = Image.fromarray(result_image_rgb)
|
136 |
+
pil_image.save("stitched_image.jpg", "JPEG")
|
137 |
+
return pil_image, "stitched_image.jpg"
|
138 |
+
|
139 |
+
return None, None
|
140 |
+
|
141 |
+
# Gradio interface
|
142 |
with gr.Blocks() as interface:
|
143 |
+
gr.Markdown("<h1 style='color: #2196F3; text-align: center;'>Image Stitcher 🧵</h1>")
|
144 |
+
gr.Markdown("<h3 style='color: #2196F3; text-align: center;'>=== Upload the images you want to stitch ===</h3>")
|
145 |
+
|
146 |
+
image_upload = gr.Files(type="filepath", label="Upload Images")
|
147 |
+
stitch_button = gr.Button("Stitch", variant="primary")
|
148 |
+
stitched_image = gr.Image(type="pil", label="Stitched Image")
|
149 |
+
download_button = gr.File(label="Download Stitched Image")
|
150 |
+
|
151 |
+
stitch_button.click(gradio_stitch_and_detect, inputs=image_upload, outputs=[stitched_image, download_button])
|
152 |
+
|
153 |
+
interface.launch()
|
|
|
|