Spaces:
Running
Running
Delete app.py
Browse files
app.py
DELETED
@@ -1,75 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
from typing import Union, List
|
5 |
-
from pathlib import Path
|
6 |
-
from PIL import Image
|
7 |
-
import torch
|
8 |
-
|
9 |
-
# Function to resize images
|
10 |
-
|
11 |
-
def resize_images(images, scale_percent=50):
|
12 |
-
resized_images = []
|
13 |
-
for img in images:
|
14 |
-
width = int(img.shape[1] * scale_percent / 100)
|
15 |
-
height = int(img.shape[0] * scale_percent / 100)
|
16 |
-
dim = (width, height)
|
17 |
-
resized = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)
|
18 |
-
resized_images.append(resized)
|
19 |
-
return resized_images
|
20 |
-
|
21 |
-
# Function to stitch images
|
22 |
-
|
23 |
-
def stitch_images(image_paths, scale_percent=50):
|
24 |
-
images = [cv2.imread(path) for path in image_paths]
|
25 |
-
resized_images = resize_images(images, scale_percent)
|
26 |
-
stitcher = cv2.Stitcher_create()
|
27 |
-
status, stitched_image = stitcher.stitch(resized_images)
|
28 |
-
|
29 |
-
if status == cv2.Stitcher_OK:
|
30 |
-
print("Stitching successful!")
|
31 |
-
return stitched_image
|
32 |
-
else:
|
33 |
-
print(f"Stitching failed with status code: {status}")
|
34 |
-
return None
|
35 |
-
|
36 |
-
# Main image processing function
|
37 |
-
|
38 |
-
def process_image(image_paths, scale_percent=50):
|
39 |
-
stitched_image = stitch_images(image_paths, scale_percent)
|
40 |
-
|
41 |
-
if stitched_image is not None:
|
42 |
-
try:
|
43 |
-
stitched_image_rgb = cv2.cvtColor(stitched_image, cv2.COLOR_BGR2RGB)
|
44 |
-
return stitched_image_rgb
|
45 |
-
except Exception as e:
|
46 |
-
print(str(e))
|
47 |
-
return stitched_image
|
48 |
-
|
49 |
-
# Gradio interface function
|
50 |
-
|
51 |
-
def gradio_stitch_and_detect(image_files):
|
52 |
-
image_paths = [file.name for file in image_files]
|
53 |
-
result_image = process_image(image_paths, scale_percent=50)
|
54 |
-
|
55 |
-
if result_image is not None:
|
56 |
-
result_image_rgb = result_image
|
57 |
-
pil_image = Image.fromarray(result_image_rgb)
|
58 |
-
pil_image.save("stitched_image.jpg", "JPEG")
|
59 |
-
return pil_image, "stitched_image.jpg"
|
60 |
-
|
61 |
-
return None, None
|
62 |
-
|
63 |
-
# Gradio interface
|
64 |
-
with gr.Blocks() as interface:
|
65 |
-
gr.Markdown("<h1 style='color: #2196F3; text-align: center;'>Image Stitcher 🧵</h1>")
|
66 |
-
gr.Markdown("<h3 style='color: #2196F3; text-align: center;'>=== Upload the images (.jpg, .png, etc) you want to stitch ===</h3>")
|
67 |
-
|
68 |
-
image_upload = gr.Files(type="filepath", label="Upload Images")
|
69 |
-
stitch_button = gr.Button("Stitch", variant="primary")
|
70 |
-
stitched_image = gr.Image(type="pil", label="Stitched Image")
|
71 |
-
download_button = gr.File(label="Download Stitched Image")
|
72 |
-
|
73 |
-
stitch_button.click(gradio_stitch_and_detect, inputs=image_upload, outputs=[stitched_image, download_button])
|
74 |
-
|
75 |
-
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|