Spaces:
Running
Running
Upload 2 files
Browse files- app(1).py +172 -0
- requirements(2).txt +4 -0
app(1).py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import json
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
|
9 |
+
def ransac(image1, image2, detector_type):
|
10 |
+
"""
|
11 |
+
Finds the homography matrix using the RANSAC algorithm with the selected feature detector.
|
12 |
+
"""
|
13 |
+
gray1 = cv2.cvtColor(image1, cv2.COLOR_RGB2GRAY)
|
14 |
+
gray2 = cv2.cvtColor(image2, cv2.COLOR_RGB2GRAY)
|
15 |
+
|
16 |
+
if detector_type == "SIFT":
|
17 |
+
detector = cv2.SIFT_create()
|
18 |
+
matcher = cv2.FlannBasedMatcher(dict(algorithm=1, trees=5), dict(checks=50))
|
19 |
+
elif detector_type == "ORB":
|
20 |
+
detector = cv2.ORB_create()
|
21 |
+
matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
22 |
+
elif detector_type == "BRISK":
|
23 |
+
detector = cv2.BRISK_create()
|
24 |
+
matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
25 |
+
elif detector_type == "AKAZE":
|
26 |
+
detector = cv2.AKAZE_create()
|
27 |
+
matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
28 |
+
elif detector_type == "KAZE":
|
29 |
+
detector = cv2.KAZE_create()
|
30 |
+
matcher = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
|
31 |
+
else:
|
32 |
+
return None
|
33 |
+
|
34 |
+
kp1, des1 = detector.detectAndCompute(gray1, None)
|
35 |
+
kp2, des2 = detector.detectAndCompute(gray2, None)
|
36 |
+
|
37 |
+
if des1 is None or des2 is None or len(kp1) < 2 or len(kp2) < 2:
|
38 |
+
return None
|
39 |
+
|
40 |
+
try:
|
41 |
+
if detector_type == "SIFT":
|
42 |
+
matches = matcher.knnMatch(des1, des2, k=2)
|
43 |
+
good_matches = []
|
44 |
+
if matches:
|
45 |
+
for m, n in matches:
|
46 |
+
if m.distance < 0.75 * n.distance:
|
47 |
+
good_matches.append(m)
|
48 |
+
else:
|
49 |
+
matches = matcher.match(des1, des2)
|
50 |
+
good_matches = sorted(matches, key=lambda x: x.distance)
|
51 |
+
except cv2.error as e:
|
52 |
+
print(f"Error during matching: {e}")
|
53 |
+
return None
|
54 |
+
|
55 |
+
if len(good_matches) > 10:
|
56 |
+
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
|
57 |
+
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
|
58 |
+
H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
|
59 |
+
return H
|
60 |
+
else:
|
61 |
+
return None
|
62 |
+
|
63 |
+
def get_bounding_box_points(json_data):
|
64 |
+
"""
|
65 |
+
Extracts and calculates the four corner points of the bounding box, assuming x,y are top-left.
|
66 |
+
"""
|
67 |
+
print_area = json_data['printAreas'][0]
|
68 |
+
x = print_area['position']['x']
|
69 |
+
y = print_area['position']['y']
|
70 |
+
w = print_area['width']
|
71 |
+
h = print_area['height']
|
72 |
+
rotation_deg = print_area['rotation']
|
73 |
+
|
74 |
+
points = np.float32([
|
75 |
+
[0, 0],
|
76 |
+
[w, 0],
|
77 |
+
[w, h],
|
78 |
+
[0, h]
|
79 |
+
]).reshape(-1, 1, 2)
|
80 |
+
|
81 |
+
rotation_rad = math.radians(rotation_deg)
|
82 |
+
cos_theta = math.cos(rotation_rad)
|
83 |
+
sin_theta = math.sin(rotation_rad)
|
84 |
+
rotation_matrix = np.array([
|
85 |
+
[cos_theta, -sin_theta],
|
86 |
+
[sin_theta, cos_theta]
|
87 |
+
])
|
88 |
+
|
89 |
+
rotated_points = np.dot(points.reshape(-1, 2), rotation_matrix.T)
|
90 |
+
final_points = rotated_points + np.array([x, y])
|
91 |
+
return final_points.reshape(-1, 1, 2)
|
92 |
+
|
93 |
+
def process_and_plot_all_detectors(image1_np, image2_np, json_file):
|
94 |
+
"""
|
95 |
+
Processes the images with all available detectors and returns image data for display and download.
|
96 |
+
"""
|
97 |
+
if image1_np is None or image2_np is None:
|
98 |
+
return [None] * 6
|
99 |
+
|
100 |
+
try:
|
101 |
+
with open(json_file.name, 'r') as f:
|
102 |
+
data = json.load(f)
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Error: Could not read JSON file. {e}")
|
105 |
+
return [None] * 6
|
106 |
+
|
107 |
+
detectors = ["SIFT", "ORB", "BRISK", "AKAZE", "KAZE"]
|
108 |
+
gallery_images = []
|
109 |
+
download_files = [None] * 5
|
110 |
+
|
111 |
+
for i, detector_type in enumerate(detectors):
|
112 |
+
H = ransac(image1_np, image2_np, detector_type)
|
113 |
+
|
114 |
+
if H is not None:
|
115 |
+
box_points = get_bounding_box_points(data)
|
116 |
+
|
117 |
+
output_flat_img = image1_np.copy()
|
118 |
+
cv2.polylines(output_flat_img, [np.int32(box_points)], isClosed=True, color=(0, 0, 255), thickness=5)
|
119 |
+
|
120 |
+
transformed_box_points = cv2.perspectiveTransform(box_points, H)
|
121 |
+
|
122 |
+
output_perspective_img = image2_np.copy()
|
123 |
+
cv2.polylines(output_perspective_img, [np.int32(transformed_box_points)], isClosed=True, color=(0, 0, 255), thickness=5)
|
124 |
+
|
125 |
+
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
|
126 |
+
axes[0].imshow(cv2.cvtColor(output_flat_img, cv2.COLOR_BGR2RGB))
|
127 |
+
axes[0].set_title(f'Original (Flat) - {detector_type}')
|
128 |
+
axes[0].axis('off')
|
129 |
+
|
130 |
+
axes[1].imshow(cv2.cvtColor(image2_np, cv2.COLOR_BGR2RGB))
|
131 |
+
axes[1].set_title('Original (Perspective)')
|
132 |
+
axes[1].axis('off')
|
133 |
+
|
134 |
+
axes[2].imshow(cv2.cvtColor(output_perspective_img, cv2.COLOR_BGR2RGB))
|
135 |
+
axes[2].set_title('Projected Bounding Box')
|
136 |
+
axes[2].axis('off')
|
137 |
+
|
138 |
+
plt.tight_layout()
|
139 |
+
|
140 |
+
file_name = f"result_{detector_type.lower()}.png"
|
141 |
+
plt.savefig(file_name)
|
142 |
+
plt.close(fig)
|
143 |
+
|
144 |
+
gallery_images.append(file_name)
|
145 |
+
download_files[i] = file_name
|
146 |
+
else:
|
147 |
+
print(f"Warning: Homography matrix could not be found with {detector_type} detector. Skipping this result.")
|
148 |
+
# We don't append None to the gallery_images list to avoid the error.
|
149 |
+
# download_files[i] remains None, which is handled correctly by gr.File.
|
150 |
+
|
151 |
+
return [gallery_images] + download_files
|
152 |
+
|
153 |
+
iface = gr.Interface(
|
154 |
+
fn=process_and_plot_all_detectors,
|
155 |
+
inputs=[
|
156 |
+
gr.Image(type="numpy", label="Image 1 (Flat)"),
|
157 |
+
gr.Image(type="numpy", label="Image 2 (Perspective)"),
|
158 |
+
gr.File(type="filepath", label="JSON File")
|
159 |
+
],
|
160 |
+
outputs=[
|
161 |
+
gr.Gallery(label="Results"),
|
162 |
+
gr.File(label="Download SIFT Result"),
|
163 |
+
gr.File(label="Download ORB Result"),
|
164 |
+
gr.File(label="Download BRISK Result"),
|
165 |
+
gr.File(label="Download AKAZE Result"),
|
166 |
+
gr.File(label="Download KAZE Result")
|
167 |
+
],
|
168 |
+
title="Homography and Bounding Box Projection with All Detectors",
|
169 |
+
description="Upload two images and a JSON file to see the bounding box projection for all 5 feature extraction methods. Each result can be downloaded separately."
|
170 |
+
)
|
171 |
+
|
172 |
+
iface.launch()
|
requirements(2).txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
opencv-python
|
3 |
+
numpy
|
4 |
+
matplotlib
|