Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import json
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
-
import
|
7 |
|
8 |
# ---------------- Helper functions ----------------
|
9 |
def get_rotated_rect_corners(x, y, w, h, rotation_deg):
|
@@ -36,16 +36,30 @@ def detect_and_match(img1_gray, img2_gray, method="SIFT", ratio_thresh=0.78):
|
|
36 |
good = [m for m,n in raw_matches if m.distance < ratio_thresh*n.distance]
|
37 |
return kp1, kp2, good
|
38 |
|
39 |
-
|
40 |
-
|
|
|
41 |
root = tree.getroot()
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def pad_to_size(img, target_h, target_w):
|
50 |
h, w = img.shape[:2]
|
51 |
canvas = np.ones((target_h, target_w,3), dtype=np.uint8)*255
|
@@ -77,7 +91,7 @@ def homography_all_detectors(flat_file, persp_file, json_file, xml_file):
|
|
77 |
|
78 |
flat_gray = preprocess_gray_clahe(flat_img)
|
79 |
persp_gray = preprocess_gray_clahe(persp_img)
|
80 |
-
|
81 |
|
82 |
methods = ["SIFT","ORB","BRISK","KAZE","AKAZE"]
|
83 |
gallery_paths = []
|
@@ -89,47 +103,42 @@ def homography_all_detectors(flat_file, persp_file, json_file, xml_file):
|
|
89 |
|
90 |
match_img = cv2.drawMatches(flat_img,kp1,persp_img,kp2,good_matches,None,flags=2)
|
91 |
|
|
|
|
|
92 |
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1,1,2)
|
93 |
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1,1,2)
|
94 |
H,_ = cv2.findHomography(src_pts,dst_pts,cv2.RANSAC,5.0)
|
95 |
-
if H is None: continue
|
96 |
-
|
97 |
-
roi_corners_flat = get_rotated_rect_corners(roi_x,roi_y,roi_w,roi_h,roi_rot_deg)
|
98 |
-
roi_corners_persp = cv2.perspectiveTransform(roi_corners_flat.reshape(-1,1,2),H).reshape(-1,2)
|
99 |
persp_roi = persp_img.copy()
|
100 |
-
|
101 |
-
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
for px,py in xml_mapped: cv2.circle(xml_gt_img,(int(px),int(py)),5,(0,0,255),-1)
|
106 |
|
107 |
# Convert to RGB
|
108 |
flat_rgb = cv2.cvtColor(flat_img,cv2.COLOR_BGR2RGB)
|
109 |
-
|
|
|
110 |
roi_rgb = cv2.cvtColor(persp_roi,cv2.COLOR_BGR2RGB)
|
111 |
xml_rgb = cv2.cvtColor(xml_gt_img,cv2.COLOR_BGR2RGB)
|
112 |
|
113 |
-
#
|
114 |
-
match_rgb = match_img_to_reference(cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB),
|
115 |
-
flat_rgb.shape[0], flat_rgb.shape[1])
|
116 |
-
|
117 |
-
# Determine max height and width for grid
|
118 |
max_h = max(flat_rgb.shape[0], match_rgb.shape[0], roi_rgb.shape[0], xml_rgb.shape[0])
|
119 |
max_w = max(flat_rgb.shape[1], match_rgb.shape[1], roi_rgb.shape[1], xml_rgb.shape[1])
|
120 |
|
121 |
-
# Pad
|
122 |
flat_pad = pad_to_size(flat_rgb, max_h, max_w)
|
123 |
match_pad = pad_to_size(match_rgb, max_h, max_w)
|
124 |
roi_pad = pad_to_size(roi_rgb, max_h, max_w)
|
125 |
xml_pad = pad_to_size(xml_rgb, max_h, max_w)
|
126 |
|
127 |
-
#
|
128 |
top = np.hstack([flat_pad, match_pad])
|
129 |
bottom = np.hstack([roi_pad, xml_pad])
|
130 |
combined_grid = np.vstack([top, bottom])
|
131 |
|
132 |
-
# Save combined grid
|
133 |
base_name = os.path.splitext(os.path.basename(persp_file))[0]
|
134 |
file_name = f"{base_name}_{method.lower()}.png"
|
135 |
cv2.imwrite(file_name, cv2.cvtColor(combined_grid,cv2.COLOR_RGB2BGR))
|
@@ -157,7 +166,7 @@ iface = gr.Interface(
|
|
157 |
gr.File(label="Download AKAZE Result")
|
158 |
],
|
159 |
title="Homography ROI Projection with Feature Matching & XML GT",
|
160 |
-
description="Flat + Perspective images with mockup.json & XML.
|
161 |
)
|
162 |
|
163 |
iface.launch()
|
|
|
3 |
import json
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
+
from lxml import etree
|
7 |
|
8 |
# ---------------- Helper functions ----------------
|
9 |
def get_rotated_rect_corners(x, y, w, h, rotation_deg):
|
|
|
36 |
good = [m for m,n in raw_matches if m.distance < ratio_thresh*n.distance]
|
37 |
return kp1, kp2, good
|
38 |
|
39 |
+
# ---------------- XML overlay helper using lxml ----------------
|
40 |
+
def extract_points_lxml(xml_path):
|
41 |
+
tree = etree.parse(xml_path)
|
42 |
root = tree.getroot()
|
43 |
+
transform = root.find('.//transform')
|
44 |
+
points = {}
|
45 |
+
for pt in transform.findall('.//point'):
|
46 |
+
pt_type = pt.attrib['type']
|
47 |
+
x = float(pt.attrib['x'])
|
48 |
+
y = float(pt.attrib['y'])
|
49 |
+
points[pt_type] = (x,y)
|
50 |
+
return points
|
51 |
+
|
52 |
+
def draw_polygon_on_image(img, points_dict):
|
53 |
+
ordered_points = ['TopLeft','TopRight','BottomRight','BottomLeft']
|
54 |
+
polygon = [points_dict[pt] for pt in ordered_points]
|
55 |
+
pts = np.array(polygon, np.int32).reshape((-1,1,2))
|
56 |
+
img_copy = img.copy()
|
57 |
+
cv2.polylines(img_copy, [pts], isClosed=True, color=(0,0,255), thickness=3)
|
58 |
+
for px, py in polygon:
|
59 |
+
cv2.circle(img_copy, (int(px),int(py)), 5, (255,0,0), -1)
|
60 |
+
return img_copy
|
61 |
+
|
62 |
+
# ---------------- Padding Helper ----------------
|
63 |
def pad_to_size(img, target_h, target_w):
|
64 |
h, w = img.shape[:2]
|
65 |
canvas = np.ones((target_h, target_w,3), dtype=np.uint8)*255
|
|
|
91 |
|
92 |
flat_gray = preprocess_gray_clahe(flat_img)
|
93 |
persp_gray = preprocess_gray_clahe(persp_img)
|
94 |
+
xml_points_dict = extract_points_lxml(xml_file.name)
|
95 |
|
96 |
methods = ["SIFT","ORB","BRISK","KAZE","AKAZE"]
|
97 |
gallery_paths = []
|
|
|
103 |
|
104 |
match_img = cv2.drawMatches(flat_img,kp1,persp_img,kp2,good_matches,None,flags=2)
|
105 |
|
106 |
+
# ROI on perspective image
|
107 |
+
roi_corners_flat = get_rotated_rect_corners(roi_x,roi_y,roi_w,roi_h,roi_rot_deg)
|
108 |
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1,1,2)
|
109 |
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1,1,2)
|
110 |
H,_ = cv2.findHomography(src_pts,dst_pts,cv2.RANSAC,5.0)
|
|
|
|
|
|
|
|
|
111 |
persp_roi = persp_img.copy()
|
112 |
+
if H is not None:
|
113 |
+
roi_corners_persp = cv2.perspectiveTransform(roi_corners_flat.reshape(-1,1,2),H).reshape(-1,2)
|
114 |
+
cv2.polylines(persp_roi,[roi_corners_persp.astype(int)],True,(0,255,0),2)
|
115 |
+
for px,py in roi_corners_persp: cv2.circle(persp_roi,(int(px),int(py)),5,(255,0,0),-1)
|
116 |
|
117 |
+
# XML GT overlay on perspective
|
118 |
+
xml_gt_img = draw_polygon_on_image(persp_img, xml_points_dict)
|
|
|
119 |
|
120 |
# Convert to RGB
|
121 |
flat_rgb = cv2.cvtColor(flat_img,cv2.COLOR_BGR2RGB)
|
122 |
+
match_rgb = match_img_to_reference(cv2.cvtColor(match_img,cv2.COLOR_BGR2RGB),
|
123 |
+
flat_rgb.shape[0], flat_rgb.shape[1])
|
124 |
roi_rgb = cv2.cvtColor(persp_roi,cv2.COLOR_BGR2RGB)
|
125 |
xml_rgb = cv2.cvtColor(xml_gt_img,cv2.COLOR_BGR2RGB)
|
126 |
|
127 |
+
# Determine max height and width
|
|
|
|
|
|
|
|
|
128 |
max_h = max(flat_rgb.shape[0], match_rgb.shape[0], roi_rgb.shape[0], xml_rgb.shape[0])
|
129 |
max_w = max(flat_rgb.shape[1], match_rgb.shape[1], roi_rgb.shape[1], xml_rgb.shape[1])
|
130 |
|
131 |
+
# Pad images
|
132 |
flat_pad = pad_to_size(flat_rgb, max_h, max_w)
|
133 |
match_pad = pad_to_size(match_rgb, max_h, max_w)
|
134 |
roi_pad = pad_to_size(roi_rgb, max_h, max_w)
|
135 |
xml_pad = pad_to_size(xml_rgb, max_h, max_w)
|
136 |
|
137 |
+
# 2x2 grid
|
138 |
top = np.hstack([flat_pad, match_pad])
|
139 |
bottom = np.hstack([roi_pad, xml_pad])
|
140 |
combined_grid = np.vstack([top, bottom])
|
141 |
|
|
|
142 |
base_name = os.path.splitext(os.path.basename(persp_file))[0]
|
143 |
file_name = f"{base_name}_{method.lower()}.png"
|
144 |
cv2.imwrite(file_name, cv2.cvtColor(combined_grid,cv2.COLOR_RGB2BGR))
|
|
|
166 |
gr.File(label="Download AKAZE Result")
|
167 |
],
|
168 |
title="Homography ROI Projection with Feature Matching & XML GT",
|
169 |
+
description="Flat + Perspective images with mockup.json & XML. Grid aligned. Perspective GT overlay now uses XML lxml parsing."
|
170 |
)
|
171 |
|
172 |
iface.launch()
|