Ayesha352 commited on
Commit
399ad34
·
verified ·
1 Parent(s): 00c2dbc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -158
app.py CHANGED
@@ -1,158 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- import json
4
- import gradio as gr
5
- import os
6
- import xml.etree.ElementTree as ET
7
-
8
- # ---------------- Helper functions ----------------
9
- def get_rotated_rect_corners(x, y, w, h, rotation_deg):
10
- rot_rad = np.deg2rad(rotation_deg)
11
- cos_r, sin_r = np.cos(rot_rad), np.sin(rot_rad)
12
- R = np.array([[cos_r, -sin_r], [sin_r, cos_r]])
13
- cx, cy = x + w/2, y + h/2
14
- local_corners = np.array([[-w/2,-h/2],[w/2,-h/2],[w/2,h/2],[-w/2,h/2]])
15
- rotated_corners = np.dot(local_corners, R.T)
16
- return (rotated_corners + np.array([cx,cy])).astype(np.float32)
17
-
18
- def preprocess_gray_clahe(img):
19
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
20
- clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
21
- return clahe.apply(gray)
22
-
23
- def detect_and_match(img1_gray, img2_gray, method="SIFT", ratio_thresh=0.78):
24
- if method=="SIFT": detector=cv2.SIFT_create(nfeatures=5000); matcher=cv2.BFMatcher(cv2.NORM_L2)
25
- elif method=="ORB": detector=cv2.ORB_create(5000); matcher=cv2.BFMatcher(cv2.NORM_HAMMING)
26
- elif method=="BRISK": detector=cv2.BRISK_create(); matcher=cv2.BFMatcher(cv2.NORM_HAMMING)
27
- elif method=="KAZE": detector=cv2.KAZE_create(); matcher=cv2.BFMatcher(cv2.NORM_L2)
28
- elif method=="AKAZE": detector=cv2.AKAZE_create(); matcher=cv2.BFMatcher(cv2.NORM_HAMMING)
29
- else: return None,None,[]
30
-
31
- kp1, des1 = detector.detectAndCompute(img1_gray,None)
32
- kp2, des2 = detector.detectAndCompute(img2_gray,None)
33
- if des1 is None or des2 is None: return None,None,[]
34
-
35
- raw_matches = matcher.knnMatch(des1,des2,k=2)
36
- good = [m for m,n in raw_matches if m.distance < ratio_thresh*n.distance]
37
- return kp1, kp2, good
38
-
39
- def parse_xml_points(xml_file):
40
- tree = ET.parse(xml_file)
41
- root = tree.getroot()
42
- points=[]
43
- for pt_type in ["TopLeft","TopRight","BottomLeft","BottomRight"]:
44
- elem=root.find(f".//point[@type='{pt_type}']")
45
- points.append([float(elem.get("x")), float(elem.get("y"))])
46
- return np.array(points,dtype=np.float32).reshape(-1,2)
47
-
48
- # ---------------- Padding Helper ----------------
49
- def pad_to_size(img, target_h, target_w):
50
- h, w = img.shape[:2]
51
- top_pad = 0
52
- left_pad = 0
53
- bottom_pad = target_h - h
54
- right_pad = target_w - w
55
- canvas = np.ones((target_h, target_w,3), dtype=np.uint8)*255
56
- canvas[top_pad:top_pad+h, left_pad:left_pad+w] = img
57
- return canvas
58
-
59
- # ---------------- Resize feature-match to original reference size ----------------
60
- def match_img_to_reference(match_img, ref_h, ref_w):
61
- h, w = match_img.shape[:2]
62
- scale = min(ref_w/w, ref_h/h)
63
- new_w, new_h = int(w*scale), int(h*scale)
64
- resized = cv2.resize(match_img, (new_w,new_h))
65
- padded = pad_to_size(resized, ref_h, ref_w)
66
- return padded
67
-
68
- # ---------------- Main Function ----------------
69
- def homography_all_detectors(flat_file, persp_file, json_file, xml_file):
70
- flat_img = cv2.imread(flat_file)
71
- persp_img = cv2.imread(persp_file)
72
- mockup = json.load(open(json_file.name))
73
- roi_data = mockup["printAreas"][0]["position"]
74
- roi_x, roi_y = roi_data["x"], roi_data["y"]
75
- roi_w, roi_h = mockup["printAreas"][0]["width"], mockup["printAreas"][0]["height"]
76
- roi_rot_deg = mockup["printAreas"][0]["rotation"]
77
-
78
- flat_gray = preprocess_gray_clahe(flat_img)
79
- persp_gray = preprocess_gray_clahe(persp_img)
80
- xml_points = parse_xml_points(xml_file.name)
81
-
82
- methods = ["SIFT","ORB","BRISK","KAZE","AKAZE"]
83
- gallery_paths = []
84
- download_files = []
85
-
86
- for method in methods:
87
- kp1,kp2,good_matches = detect_and_match(flat_gray,persp_gray,method)
88
- if kp1 is None or kp2 is None or len(good_matches)<4: continue
89
-
90
- match_img = cv2.drawMatches(flat_img,kp1,persp_img,kp2,good_matches,None,flags=2)
91
-
92
- src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1,1,2)
93
- dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1,1,2)
94
- H,_ = cv2.findHomography(src_pts,dst_pts,cv2.RANSAC,5.0)
95
- if H is None: continue
96
-
97
- roi_corners_flat = get_rotated_rect_corners(roi_x,roi_y,roi_w,roi_h,roi_rot_deg)
98
- roi_corners_persp = cv2.perspectiveTransform(roi_corners_flat.reshape(-1,1,2),H).reshape(-1,2)
99
- persp_roi = persp_img.copy()
100
- cv2.polylines(persp_roi,[roi_corners_persp.astype(int)],True,(0,255,0),2)
101
- for px,py in roi_corners_persp: cv2.circle(persp_roi,(int(px),int(py)),5,(255,0,0),-1)
102
-
103
- xml_gt_img = persp_img.copy()
104
- xml_mapped = cv2.perspectiveTransform(xml_points.reshape(-1,1,2),H).reshape(-1,2)
105
- for px,py in xml_mapped: cv2.circle(xml_gt_img,(int(px),int(py)),5,(0,0,255),-1)
106
-
107
- # Convert to RGB
108
- flat_rgb = cv2.cvtColor(flat_img,cv2.COLOR_BGR2RGB)
109
- persp_rgb = cv2.cvtColor(persp_img,cv2.COLOR_BGR2RGB)
110
- roi_rgb = cv2.cvtColor(persp_roi,cv2.COLOR_BGR2RGB)
111
- xml_rgb = cv2.cvtColor(xml_gt_img,cv2.COLOR_BGR2RGB)
112
-
113
- # Resize feature-match image to match original flat/perspective
114
- match_rgb = match_img_to_reference(cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB), flat_rgb.shape[0], flat_rgb.shape[1])
115
-
116
- # Determine max height and width for grid (all images now same)
117
- max_h = max(flat_rgb.shape[0], match_rgb.shape[0], roi_rgb.shape[0], xml_rgb.shape[0])
118
- max_w = max(flat_rgb.shape[1], match_rgb.shape[1], roi_rgb.shape[1], xml_rgb.shape[1])
119
-
120
- flat_pad = pad_to_size(flat_rgb, max_h, max_w)
121
- roi_pad = pad_to_size(roi_rgb, max_h, max_w)
122
- xml_pad = pad_to_size(xml_rgb, max_h, max_w)
123
-
124
- # Merge 2x2 grid
125
- top = np.hstack([flat_pad, match_rgb])
126
- bottom = np.hstack([roi_pad, xml_pad])
127
- combined_grid = np.vstack([top, bottom])
128
-
129
- base_name = os.path.splitext(os.path.basename(persp_file))[0]
130
- file_name = f"{base_name}_{method.lower()}.png"
131
- cv2.imwrite(file_name, cv2.cvtColor(combined_grid,cv2.COLOR_RGB2BGR))
132
- gallery_paths.append(file_name)
133
- download_files.append(file_name)
134
-
135
- while len(download_files)<5: download_files.append(None)
136
- return gallery_paths, download_files[0], download_files[1], download_files[2], download_files[3], download_files[4]
137
-
138
- iface = gr.Interface(
139
- fn=homography_all_detectors,
140
- inputs=[
141
- gr.Image(label="Upload Flat Image",type="filepath"),
142
- gr.Image(label="Upload Perspective Image",type="filepath"),
143
- gr.File(label="Upload mockup.json",file_types=[".json"]),
144
- gr.File(label="Upload XML file",file_types=[".xml"])
145
- ],
146
- outputs=[
147
- gr.Gallery(label="Results per Detector",show_label=True),
148
- gr.File(label="Download SIFT Result"),
149
- gr.File(label="Download ORB Result"),
150
- gr.File(label="Download BRISK Result"),
151
- gr.File(label="Download KAZE Result"),
152
- gr.File(label="Download AKAZE Result")
153
- ],
154
- title="Homography ROI Projection with Feature Matching & XML GT",
155
- description="Flat + Perspective images with mockup.json & XML. Feature-match aligned with original images using white padding."
156
- )
157
-
158
- iface.launch()